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ABSTRACT
Continuous subgraph matching (CSM) is an important building

block in many real-time graph processing applications. Given a

subgraph query 𝑄 and a data graph stream, a CSM algorithm re-

ports the occurrences of 𝑄 in the stream. Specifically, when a new

edge 𝑒 arrives in the stream, existing CSM algorithms start from the

inserted 𝑒 in the current data graph 𝐺 to search 𝑄 . However, this

rigid matching order of always starting from 𝑒 can lead to a massive

number of partial results that will turn out futile. Also, if𝑄 contains

automorphisms, there will be a lot of redundant computation in

the matching process. To address these two problems, we propose

RapidFlow, an effective approach to CSM. First, we design a query

reduction technique, which reduces CSM to batch subgraph match-

ing (BSM) where we enumerate all results in a region of𝐺 that will

be affected by the update. The well-established BSM techniques can

determine effective matching orders, not necessarily starting from

the newly inserted edge. Second, to eliminate redundant compu-

tation caused by automorphisms in 𝑄 , we propose dual matching,

which leverages the duality of 𝑄 and 𝐺 in the matching process.

Extensive experiment results show that RapidFlow outperforms

state-of-the-art algorithms, including TurboFlux and SymBi, by up

to two orders of magnitude on various workloads.
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1 INTRODUCTION
Continuous subgraph matching (CSM) reports the occurrences of a

query graph in a graph stream. Specifically, given a query graph 𝑄 ,
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(b) Data graph𝐺 .
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(c)𝐺′: Insert 𝑒 (𝑣2, 𝑣3) to𝐺 .
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(d)𝐺′′: Insert 𝑒 (𝑣6, 𝑣13) to𝐺′.
Figure 1: Example graphs.

a data graph 𝐺 and a sequence ΔG of updates on 𝐺 , CSM finds the

incremental matches of𝑄 in𝐺 for each update Δ𝐺 ∈ ΔG. For exam-

ple, {(𝑢0, 𝑣0), (𝑢1, 𝑣1), (𝑢2, 𝑣4), (𝑢3, 𝑣10), (𝑢4, 𝑣11)} is a match given

𝑄 and𝐺 in Figure 1. Asmatches {(𝑢0, 𝑣2), (𝑢1, 𝑣3), (𝑢2, 𝑣8), (𝑢3, 𝑣12),
(𝑢4, 𝑣13)} and {(𝑢0, 𝑣2), (𝑢1, 𝑣3), (𝑢2, 𝑣8), (𝑢3, 𝑣13), (𝑢4, 𝑣12)} appear
in𝐺 ′when inserting 𝑒 (𝑣2, 𝑣3) to𝐺 in Figure 1c, they are incremental

results for the update.

CSM is an important operation in many real-time graph analysis

applications, for example, monitoring cycles in transaction graphs

to detect merchant frauds in e-commerce [27], matching rumor

patterns in message transmission graphs to identify the spread of

rumors [37], and spotting system anomalies by analyzing communi-

cation logs among computers [20]. Thus, CSM has recently received

significant research interests [8, 10, 16, 18, 23]. To facilitate online

monitoring of subgraph patterns, we investigate how to further

improve the performance of CSM.

Researchers have recently proposed a variety of incremental

methods such as SJ-Tree [8], Graphflow [16], TurboFlux [18] and

SymBi [23]. All these studies start a search procedure from the

updated edge because a match is an incremental result for Δ𝐺 iff

the match contains the updated edge in Δ𝐺 . The search procedure

recursively extends partial results, which are mappings from query

vertices to data vertices, by binding a query vertex (i.e., vertices in

𝑄) to a data vertex (i.e., vertices in𝐺) at each step along a matching

order (i.e., a sequence of query vertices). In order to reduce the
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search space size, existing research has developed powerful filtering

rules to minimize the number of candidate data vertices for each

query vertex and optimized matching orders to reduce the number

of partial results.

Although these techniques significantly accelerate the CSM per-

formance, we observe that they have a lot of redundant or un-

necessary computation (More details are presented in Section 2.4).

First, the matching order always starts from the updated edge. This

choice may lead to massive invalid partial results (i.e., partial results

that cannot be extended to final results). Second, the redundant

computation is even more severe if 𝑄 contains more than one auto-

morphism. Specifically, given edges 𝑒 and 𝑒 ′ that can be mapped

to each other in an automorphism𝑀𝑄 , the search procedure for 𝑒

finds the same set of subgraphs as that for 𝑒 ′, and the computation

for either edge is sufficient for the other.

In this paper, we proposeRapidFlow to improve matching order

and reduce redundant computation in CSM. Given the updated

edge 𝑒 (𝑣𝑎, 𝑣𝑏 ) and a query edge 𝑒 (𝑢𝑎, 𝑢𝑏 ), we propose a novel query
reduction technique that reduces the problem of finding the set

ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) of incremental matches mapping 𝑒 (𝑢𝑎, 𝑢𝑏 ) to 𝑒 (𝑣𝑎, 𝑣𝑏 )
to that of enumerating all matches of 𝑄𝑅 where 𝑄𝑅 = 𝑄 − {𝑢𝑎, 𝑢𝑏 }
(𝑄𝑅 is the graph with 𝑢𝑎, 𝑢𝑏 as well as adjacent edges removed

from 𝑄). In particular, we extract a region of 𝐺 affected by the

updated edge such that there is a one-to-one mapping relation

between matches in ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) and those inM𝑄𝑅
, whereM𝑄𝑅

is the set of matches of𝑄𝑅 in the affected region. Thus, we can find

ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) by searching M𝑄𝑅
. This query reduction approach

essentially transforms CSM into a batch subgraph matching (BSM)

problem, i.e., finding all subgraphs of a data graph identical to a

query graph. BSM has been widely studied in the past decade [1–

5, 13, 14, 17, 22, 29, 30, 33–35, 38, 39]. We utilize effective filter rules

of BSM in extracting the affected region, and take advantage of

efficient matching orders by applying BSM to the affected region.

The efficiency of the query reduction approach highly depends

on the efficiency of extracting the affected region. We propose an

efficient two-level indexing mechanism to speed up the extraction.

The first-level index is a query-dependent global index 𝐼 through

which we can find all matches of 𝑄 in 𝐺 . The maintenance of 𝐼 is

lightweight. The second-level index is an update-dependent local

index 𝐴 through which we can find incremental matches for the

update by enumerating all matches of 𝑄𝑅 in the affected region.

Upon each update, 𝐴 is constructed by extracting relevant regions

from 𝐼 , rather than scanning 𝐺 , which may contain many invalid

candidates. The construction of the local index is also efficient.

To eliminate the duplicate computation incurred by automor-

phisms of 𝑄 , we design the dual matching technique. Specifically,

based on automorphisms, we group query edges into a set X of dis-

joint sets𝑋 , called auto-set, such that given𝑋 , the search procedure

for each query edge in𝑋 finds the same set of subgraphs in𝐺 . Given

an update, we first find incremental matches ΔM𝑒 for an arbitrary

edge 𝑒 ∈ 𝑋 . Then, we obtain incremental matches for the other

edges in 𝑋 by reversing the roles of query graphs and data graphs

and permutating query vertices in ΔM𝑒 instead of searching in

the data graph. This way, we eliminate the redundant computation

problem and reduce the number of independent search procedures

from |𝐸 (𝑄) | to |X|.

Our experiment results on a variety of datasets show that Rapid-

Flow achieves speedups of up to two orders of magnitude over

state-of-the-art CSM methods including SymBi [23] and TurboFlux

[18]. Furthermore, RapidFlow dramatically reduces the number of

queries that cannot be resolved within a time limit (60 minutes).

In summary, we make the following contributions in this paper:

• We study the CSM problem and propose RapidFlow, an

efficient approach to CSM.

• Wedesign a query reduction technique that optimizesmatch-

ing orders and enables CSM to utilize efficient BSMmethods

to process graph streams.

• We propose a dual matching technique to eliminate redun-

dant computation incurred by automorphisms of 𝑄 .

• We conduct detailed experiments to evaluate the effective-

ness of RapidFlow.

2 BACKGROUND
In this section, we present the background related to this paper.

2.1 Preliminaries
We focus on the undirected and labeled graph 𝑔 = (𝑉 , 𝐸) in this

paper.𝑉 is a set of vertices and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges. Given a

vertex 𝑢 ∈ 𝑉 , 𝑁 (𝑢) is the set of 𝑢’s neighbors (i.e., vertices adjacent
to 𝑢 in 𝑔) and 𝑑 (𝑢) is the degree of 𝑢 (i.e., 𝑑 (𝑢) = |𝑁 (𝑢) |). 𝐿 is

the function mapping a vertex to a label 𝑙 in a label set Σ. In our

implementation, RapidFlow supports both vertex and edge labels.

𝑄 and 𝐺 denote the query graph and data graph, respectively. We

call vertices and edges of 𝑄 query vertices and query edges, and

those of 𝐺 data vertices and data edges. ΔG is a sequence of graph

update operations (Δ𝐺1,Δ𝐺2, ...) on 𝐺 where Δ𝐺 = (⊕, 𝑒). ⊕ = +
is the insertion of an edge 𝑒 , and ⊕ = − is the deletion of 𝑒 . Table 1

lists the notations frequently used in this paper.

Definition 2.1 defines subgraph isomorphism. We call a subgraph

isomorphism a match in short. Batch subgraph matching (BSM)

enumerates the set of all matches of 𝑄 in𝐺 . Given an update Δ𝐺 ∈
ΔG, 𝐺 ′ is the graph resulted from applying Δ𝐺 to 𝐺 . Then, the set

ΔM of incremental matches on Δ𝐺 is the difference betweenM
andM ′ whereM andM ′ represent the matches of𝑄 in𝐺 and𝐺 ′,
respectively. We define the continuous subgraph matching (CSM)

problem as follows. Note that both BSM and CSM are NP-hard [10].

Problem Statement. Given𝑄 ,𝐺 and ΔG, continuous subgraph
matching is to find the set ΔM of incremental matches for each

Δ𝐺 ∈ ΔG.

Definition 2.1. Given graphs 𝑔 and 𝑔′, a subgraph isomorphism

of 𝑔 in 𝑔′ is a bijective function𝑀 from 𝑉 (𝑔) to 𝑉 (𝑔′′) where 𝑔′′
is a subgraph of 𝑔′ such that

(1) ∀𝑢 ∈ 𝑉 (𝑔), 𝐿(𝑢) = 𝐿(𝑀 (𝑢));
(2) ∀𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑔), 𝑒 (𝑀 (𝑢), 𝑀 (𝑢 ′)) ∈ 𝐸 (𝑔′′).

2.2 Related Work
In the following, we discuss related work on batch subgraph match-

ing and continuous subgraph matching to put our work in context.

Batch subgraph matching has been widely studied since Ull-

mann [36] proposed a graph exploration-based backtracking ap-

proach in 1976. Existing graph-exploration based methods can be



Table 1: Notations frequently used in this paper.
Notations Descriptions

𝑔,𝑄 ,𝐺 graph, query graph, data graph

𝑉 (𝑔) , 𝐸 (𝑔) vertex set of 𝑔, edge set of 𝑔

𝑁 (𝑢) , 𝑑 (𝑢) , 𝐿 (𝑢) neighbors, degree and label of 𝑢

𝑒 (𝑢,𝑢′) edge between 𝑢 and 𝑢′

𝐼 , 𝐴 global index and local index

𝐶𝐼 (𝑢) (or𝐶𝐴 (𝑢)) candidate set of 𝑢 in global (or local) index

𝐼𝑢
𝑢′ (𝑣) 𝑣’s neighbors in𝐶𝐼 (𝑢′) given 𝑣 ∈ 𝐶𝐼 (𝑢)
𝐴𝑢
𝑢′ (𝑣) 𝑣’s neighbors in𝐶𝐴 (𝑢′) given 𝑣 ∈ 𝐶𝐴 (𝑢)

𝑋 , X auto-set and the set of auto-sets

ΔM incremental matches for an update

ΔM𝑒 incremental matches mapping 𝑒 to the updated edge

𝑀 mappings from query vertices to data vertices

𝜑 matching order

𝑁
𝜑
+ (𝑢) neighbors of 𝑢 before 𝑢 in 𝜑

Δ𝐺 , ΔG graph update, graph stream

⊕ = +/− the insertion/deletion of an edge

categorized by whether to use indexes or auxiliary structures [33].

The direct-enumeration methods such as Ullmann [36], VF2 [9],

QuickSI [30], and RI [5] directly search on𝐺 to find all matches. The

indexing-enumeration methods, including GADDI [38], SPath [39],

and SGMatch [29] construct indices on sub-structures (e.g., paths)

of 𝐺 and use the index to serve all queries. Latest algorithms, in-

cluding TurboIso [14], CFLMatch [4], CECI [3], DP-iso [13] and

VEQ [17], build an auxiliary data structure for𝑄 in a preprocessing

step, and then enumerate all matches with the assistance of the

data structure. In contrast to these exploration-based methods, the

join-based approaches [1, 2, 22, 34, 35] model the problem as a join

query and conduct multi-way joins to answer the query.

Continuous subgraph matching recently received significant

research interests because many real-world graphs change over

time. To the best of our knowledge, IncIsoMatch [10] is the first CSM

algorithm. The method first extracts a subgraph𝐺 ′ of𝐺 within the

distance𝐷 from the updated edgewhere𝐷 is the diameter of𝑄 , then

finds the matchesM/M ′ of𝑄 in𝐺 ′with/without the updated edge,
and finally gets incremental matches by computing the difference

betweenM andM ′. However, the method is inefficient since it

enumerates many stale matches.

To solve the problem, latest algorithms adopt the incremental

methodology. SJ-Tree [8] models a CSM query as a multi-way join

and evaluates the query with a left-deep tree. SJ-Tree stores all par-

tial results of the join as the index to serve the query. Consequently,

the index can take a large amount of memory space because of

the exponential number of partial results. Graphflow [16] starts

from the updated edge and enumerates all results in 𝐺 . However,

many invalid candidates can involve in the computation. As such,

TurboFlux [18] constructs a tree-structured index where each node

contains the candidates of a query vertex. TurboFlux dynamically

maintains the index to keep consistency with each snapshot of

𝐺 , and starts from the updated edge in the index to enumerate

incremental matches. SymBi [23] improves the pruning power by

constructing a graph-structured index and designs an adaptive or-

dering method. Nevertheless, these incremental methods start the

search from the updated edge to ensure that each reported match

is incremental.

Algorithm 1: Existing CSM Framework

Input: a query graph𝑄 , a data graph𝐺 , an update stream ΔG
Output: incremental matches ΔM for each Δ𝐺 ∈ ΔG

1 𝐼 ← build an index based on𝑄 and𝐺 ;

2 foreach Δ𝐺 = (⊕, 𝑒) ∈ ΔG do
3 if ⊕ is + then
4 Add 𝑒 to𝐺 and update 𝐼 ;

5 FindIncrementalMatch(𝑄, 𝐼, 𝑒);

6 else
7 FindIncrementalMatch(𝑄, 𝐼, 𝑒);

8 Remove 𝑒 from𝐺 and update 𝐼 ;

9 Procedure FindIncrementalMatch(𝑄, 𝐼, 𝑒 (𝑣𝑎, 𝑣𝑏 ))
10 ΔM ← {};
11 foreach 𝑒 (𝑢𝑎,𝑢𝑏 ) ∈ 𝐸 (𝑄) do
12 if 𝐿 (𝑢𝑎) = 𝐿 (𝑣𝑎) and 𝐿 (𝑢𝑏 ) = 𝐿 (𝑣𝑏 ) then
13 𝜑 ← generate a matching order beginning with𝑢𝑎,𝑢𝑏 ;

14 𝑀 ← {(𝑢𝑎, 𝑣𝑎), (𝑢𝑏 , 𝑣𝑏 ) };
15 ΔM𝑒 (𝑢𝑎 ,𝑢𝑏 ) ←Enumerate(𝜑, 𝐼,𝑀, 3);

16 ΔM ← ΔM ∪ ΔM𝑒 (𝑢𝑎 ,𝑢𝑏 ) ;

17 Output ΔM;

18 Procedure Enumerate(𝜑, 𝐼,𝑀, 𝑖)
19 if 𝑖 = |𝜑 | + 1 then Output𝑀 , return;
20 else if 𝑖 = 1 then 𝑢 ← 𝜑 [𝑖 ],𝐶𝑀 (𝑢) ← 𝐶𝐼 (𝑢) ;
21 else 𝑢 ← 𝜑 [𝑖 ],𝐶𝑀 (𝑢) ←

⋂
𝑢′∈𝑁𝜑

+ (𝑢)
𝐼𝑢
′

𝑢 (𝑀 (𝑢′)) ;
22 foreach 𝑣 ∈ 𝐶𝑀 (𝑢) do
23 if 𝑣 is not visited then
24 Add (𝑢, 𝑣) to𝑀 ;

25 Enumerate(𝜑, 𝐼,𝑀, 𝑖 + 1);
26 Remove (𝑢, 𝑣) from𝑀 ;

In addition to the generic CSM methods targeting at queries of

arbitrary structures, there are also studies about CSM on specific

query types such as paths [26, 32]. Casqd [24] finds cliques, stars

and bi-cliques in graph streams. GraphS [27] detects cycles with

length constraints. Moreover, researchers proposed approximate

algorithms [7, 10, 11, 15, 31] because finding exact results can be

time-consuming due to the hardness of the problem and subgraph

isomorphismmay be too restrictive for some applications. Addition-

ally, there are solutions on optimizing the processing of multiple

queries [21]. In this paper, we focus on the problem of finding exact

results of a single query of arbitrary structures.

2.3 A Framework for Existing CSM Approaches
We review existing work on CSM and find that they follow the

same algorithmic framework as illustrated in Algorithm 1. The

differences are in rules for pruning candidates and methods of

generating the matching order. Given 𝑄 and 𝐺 , Line 1 builds an

index 𝐼 , which maintains a candidate set 𝐶𝐼 (𝑢) for 𝑢 ∈ 𝑉 (𝑄) and
records edges between 𝐶𝐼 (𝑢) and 𝐶𝐼 (𝑢 ′) if 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄). The
use of 𝐼 is to rule out data vertices unrelated to the query, and the

search procedure enumerates results based on 𝐼 instead of 𝐺 .

In particular, given insertion of 𝑒 , Lines 4-5 first update 𝐺 and

𝐼 and then find incremental matches. FindIncrementalMatches

executes a search procedure for each 𝑒 (𝑢𝑎, 𝑢𝑏 ) ∈ 𝐸 (𝑄) (Lines 11-16).
If vertices pass the label filter at Line 12, then Line 13 generates a
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Figure 2: Running example of existing CSM methods on insertion of 𝑒 (𝑣2, 𝑣3) in Figure 1.

matching order 𝜑 , which begins with 𝑢𝑎 and 𝑢𝑏 , and Line 14 ini-

tializes𝑀 to records mappings from query vertices to data vertices.

After that, Enumerate finds the set ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) of incremental

matches mapping 𝑒 (𝑢𝑎, 𝑢𝑏 ) to 𝑒 (𝑣𝑎, 𝑣𝑏 ). Line 15 sets the initial re-
cursive depth to 3 because Line 14 has mapped 𝑢𝑎 and 𝑢𝑏 to 𝑣𝑎 and

𝑣𝑏 correspondingly.

Overall, Enumerate uses the backtracking search that extends

the partial result𝑀 by mapping a query vertex to a candidate along

𝜑 to find matches. The integer 𝑖 is the recursive depth.𝜑 [𝑖] is the 𝑖th
vertex in 𝜑 . For ease of presentation, we let 𝑖 to start from 1 instead

of 0. Given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄) and 𝑣 ∈ 𝐶𝐼 (𝑢), 𝐼𝑢𝑢′ (𝑣) = 𝑁 (𝑣) ∩𝐶𝐼 (𝑢 ′)
(i.e., the neighbors of 𝑣 who are in the candidate set of 𝑢 ′). For the
first vertex 𝑢 in 𝜑 , Line 20 sets 𝐶𝑀 (𝑢) to 𝐶𝐼 (𝑢). Otherwise, Line 21
sets 𝐶𝑀 (𝑢) to the set of common neighbors of candidates who are

mapped to query vertices 𝑢 ′ ∈ 𝑁𝜑
+ (𝑢) where 𝑁

𝜑
+ (𝑢) is the set of 𝑢’

neighbors before𝑢 in𝜑 . Lines 22-26 loop over𝐶𝑀 (𝑢) to extend𝑀 . If

all query vertices are mapped in𝑀 , then Line 19 outputs𝑀 . During

the enumeration, each partial result𝑀 containing 𝑖 mappings is a

match of 𝑄 [𝜑 [1 : 𝑖]] in 𝐺 where 𝑄 [𝜑 [1 : 𝑖]] is the vertex-induced
subgraph of𝑄 on the first 𝑖 vertices in 𝜑 . Note that Enumerate is a

common method for searching matches, which is used in both CSM

and BSM [33]. RapidFlow uses this procedure in the enumeration

of results as well.

2.4 Problems in Existing Work
Despite that existing CSM methods significantly accelerate some

queries, the common framework has inherent flaws. In the follow-

ing, we use two running examples to illustrate these issues.

1. The matching order is required to begin with query edges mapped

to the updated edge, which may lead to many invalid partial results.

Given 𝑄 and𝐺 in Figure 1, the index 𝐼 is illustrated in Figure 2a. In

the example, 𝐶𝐼 (𝑢) is generated based on the vertex label. When

inserting 𝑒 (𝑣2, 𝑣3) in Figure 1c, we first update 𝐼 in Figure 2b to keep
it consistent with𝐺 ′. As 𝑢0 and 𝑢1 have the same label as 𝑣2 and 𝑣3,

we start a search procedure for 𝑒 (𝑢0, 𝑢1) with 𝜑 beginning with 𝑢0
and 𝑢1. Suppose that 𝜑 = (𝑢0, 𝑢1, 𝑢2, 𝑢3, 𝑢4). Figure 2c visualizes the
enumeration procedure where a node denotes a partial result and an

edge represents a mapping from a query vertex to a data vertex. The

enumeration explores the search tree in a depth-first search order.

Ticks and crosses denote matches and invalid results, respectively.

Finally, we find two incremental matches for the update, and the

other four invalid search paths fail.

A simple idea of reducing the search space size is to optimize

the matching order as 𝜑 ′ = (𝑢4, 𝑢3, 𝑢2, 𝑢1, 𝑢0) because triangles

with labels (𝐶, 𝐷, 𝐷) are fewer than paths with labels (𝐴, 𝐵,𝐶, 𝐷)

in 𝐺 ′. However, this method cannot outperform existing CSM ap-

proaches since many matches of𝑄 do not contain the updated edge

𝑒 (𝑣2, 𝑣3) and the enumeration with 𝜑 ′ leads to many stale matches

(e.g., {(𝑢0, 𝑣0), (𝑢1, 𝑣1), (𝑢2, 𝑣4), (𝑢3, 𝑣10), (𝑢4, 𝑣11)}). Thus, existing
methods force 𝜑 to begin with 𝑢0 and 𝑢1, which are mapped to

the newly inserted edge 𝑒 (𝑣2, 𝑣3). In a word, starting the search

from the updated edge can ensure that each reported match is an

incremental result, but downside is that it can lead to many invalid

partial results.
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Figure 3: Incremental matches generated by existing CSM
methods given insertion of 𝑒 (𝑣6, 𝑣13) to 𝐺 ′ in Figure 1d.

2. Existing approaches may perform redundant computation if 𝑄

hasmore than one automorphism. In Figure 1a,𝑀𝑄 = {(𝑢0, 𝑢0), (𝑢1, 𝑢1),
(𝑢2, 𝑢2), (𝑢3, 𝑢4), (𝑢4, 𝑢3)} is an automorphism of𝑄 . 𝑒 (𝑢2, 𝑢3) can be
mapped to 𝑒 (𝑢2, 𝑢4) in𝑀𝑄 . When inserting 𝑒 (𝑣6, 𝑣13) to 𝐺 ′ in Fig-

ure 1d, we find incremental matches in Figure 3. ΔM𝑒 (𝑢2,𝑢3) , which
is the set of incremental matches mapping 𝑒 (𝑢2, 𝑢3) to 𝑒 (𝑣6, 𝑣13), is
reported by the search procedure for 𝑒 (𝑢2, 𝑢3), and ΔM𝑒 (𝑢2,𝑢4) is
found by the search procedure for 𝑒 (𝑢2, 𝑢4). However, the contents
of the two tables are the same, which indicates that the two search

procedures find the same set of subgraphs in 𝐺 ′′. This duplication
of results indicates the redundancy in the search process. Table

2 lists the number of queries containing more than one automor-

phism in our benchmark consisting of four datasets, amazon(az),

livejournal(lj), netflow(nf ), and lsbench(ls). The detailed statistics

of the datasets is listed in Table 3 in Section 6.1. In Table 2, we can

see that this redundancy issue frequently appears in the workload.

Table 2: The number of queries with more than one automor-
phism in our benchmark. A query set on a dataset contains
100 queries each of which has 6 vertices. Based on graph
density, we categorized queries into tree, sparse and dense.

Tree Sparse Dense
az lj nf ls az lj nf ls az lj nf ls
34 8 59 46 12 2 87 52 44 2 30 77



v11v10 v12 v13

v4 v5 v6CI(u2)
v7 v8

v11v10 v12 v13

v1

v0 v2

CI(u3)

CI(u4)

CI(u1)

CI(u0)

(a) Global index on𝐺 .

v11v10 v12 v13

v4 v5 v6CI(u2)
v7 v8

v11v10 v12 v13

v1 v3

v0 v2

CI(u3)

CI(u4)

CI(u1)

CI(u0)

(b) Global index on𝐺′.

v11 v12 v13

v6CA(u2)
v7 v8

v12 v13

CA(u3)

CA(u4)

(c) Local index.

u4

u3

u2

v12 v13

v13 v12

v8 v8

𝜑

✓ ✓

(d) Search tree.

u0 u1 u2 u3 u4

v2 v3 v8 v12 v13

v2 v3 v8 v13 v12

(e) Incremental results.
Figure 4: Running example of RapidFlow on insertion of 𝑒 (𝑣2, 𝑣3) in Figure 1.

3 AN OVERVIEW OF RAPIDFLOW
In order to address the issues in Section 2.4, we propose an end-

to-end CSM approach, called RapidFlow. Algorithm 2 gives an

overview. Overall, RapidFlow has two stages. In the offline stage,

we group query edges into a set X of disjoint sets based on au-

tomorphisms of 𝑄 and build a global index 𝐼 where we can find

all matches of 𝑄 in 𝐺 (Lines 1-2). Given an update, if the opera-

tion is insertion, then we add the edge to 𝐺 and update the global

index to keep it consistent with 𝐺 (Lines 5-6). This update on 𝐼

is light-weight given Δ𝐺 is small. After that, we find incremental

matches based on 𝐼 (Line 7). In contrast, for the deletion operation,

we reverse the order of these operations (Lines 9-11). As the global

index 𝐼 is consistent with 𝐺 , we directly invoke FindIncremental-

Matches to find incremental matches (i.e., matches containing the

edge to be deleted) based on 𝐼 . After that, we remove the edge from

𝐺 and update 𝐼 to keep its consistency. Thus, FindIncremental-

Matches is symmetric, i.e., tackling the insertion and deletion with

the same logic. Therefore, we focus on the insertion of an edge in

the following of this paper for brevity.

Given the updated data edge 𝑒 (𝑣𝑎, 𝑣𝑏 ), we find incrementalmatches

for each set𝑋 ∈ X seperately (Lines 14-23). Given 𝑒 (𝑢𝑎, 𝑢𝑏 ) ∈ 𝑋 , we

propose the query reduction technique that converts the problem of

finding the set ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) of incremental matches for 𝑒 (𝑢𝑎, 𝑢𝑏 ) to
that of enumerating all matches of 𝑄𝑅 where 𝑄𝑅 = 𝑄 − {𝑢𝑎, 𝑢𝑏 } in
the region affected by the update. Specifically, we generate a local

index𝐴 for𝑄𝑅 from the global index given the update.𝐴 maintains

a candidate set for each vertex 𝑢 ∈ 𝑉 (𝑄𝑅) and edges between can-

didates. Moreover,𝐴 guarantees that there is a one-to-one mapping

from matches of 𝑄𝑅 in 𝐴 to those in ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) . Therefore, we
can enumerate all matches of 𝑄𝑅 and then generate ΔM𝑒 (𝑢𝑎,𝑢𝑏 )
(Lines 20-21). Line 20 sets the initial recursive depth to 1 since the

input mapping set is empty. This way, we can evaluate the query

with any matching order and use the well-studied BSM techniques

to process the stream.

After that, we use the dual matching technique to find incremen-

tal matches for remaining query edges in 𝑋 to obtain ΔM𝑋 , which

is the set of incremental matches mapping 𝑒 (𝑣𝑎, 𝑣𝑏 ) to query edges

in 𝑋 . The dual matching technique finds incremental matches by

permutating query vertices in matches in ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) , rather than
executing the recursive search in 𝐺 . This way, we eliminate the

redundant computation incurred by automorphisms of 𝑄 . Example

3.1 presents a running example of RapidFlow.

Example 3.1. Figure 4a illustrates the global index 𝐼 given 𝑄

and 𝐺 in Figure 1. Given the update in Figure 1c, RapidFlow first

updates 𝐼 to keep it consistent with𝐺 ′ in Figure 4b. Next, RapidFlow
extracts the local index𝐴where eachmatch of𝑄𝑅 corresponds to an

Algorithm 2: An Overview of RapidFlow

Input: a query graph𝑄 , a data graph𝐺 , an update stream ΔG
Output: incremental matches ΔM for each Δ𝐺 ∈ ΔG
/* The offline stage. */

1 𝐼 ←BuildGlobalIndex(𝑄,𝐺);

2 X ←GenerateAutoSet(𝑄);

/* The online stage. */

3 foreach Δ𝐺 = (⊕, 𝑒) ∈ ΔG do
4 if ⊕ is + then
5 𝐺 ← 𝐺 ⊕ Δ𝐺 ;

6 UpdateGlobalIndex(𝑄,𝐺, 𝐼, ⊕, 𝑒);
7 FindIncrementalMatch(𝑄, 𝐼, 𝑒, X);
8 else
9 FindIncrementalMatch(𝑄, 𝐼, 𝑒, X);

10 𝐺 ← 𝐺 ⊕ Δ𝐺 ;

11 UpdateGlobalIndex(𝑄,𝐺, 𝐼, ⊕, 𝑒);

12 Procedure FindIncrementalMatch(𝑄, 𝐼, 𝑒 (𝑣𝑎, 𝑣𝑏 ), X)
13 ΔM ← {};
14 foreach 𝑋 ∈ X do
15 𝑒 (𝑢𝑎,𝑢𝑏 ) ← an arbitrary edge in 𝑋 ;

16 𝑄𝑅 ← 𝑄 − {𝑢𝑎,𝑢𝑏 };
17 𝐴←BuildLocalIndex(𝑄𝑅, 𝐼 , 𝑒 (𝑢𝑎,𝑢𝑏 ), 𝑒 (𝑣𝑎, 𝑣𝑏 ));
18 if there are empty candidate sets in 𝐴 then Continue;

19 𝜑 ← generate a matching order of𝑄𝑅 ;

20 M𝑄𝑅
← Enumerate(𝜑,𝐴, {}, 1);

21 ΔM𝑒 (𝑢𝑎 ,𝑢𝑏 ) ← {{(𝑢𝑎, 𝑣𝑎), (𝑢𝑏 , 𝑣𝑏 ) } ∪𝑀 |𝑀 ∈ M𝑄𝑅
};

22 ΔM𝑋 ←DualMatch(ΔM𝑒 (𝑢𝑎 ,𝑢𝑏 ) , 𝑋);

23 ΔM ← ΔM ∪ ΔM𝑋 ;

24 Output ΔM;
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Figure 5: Incremental matches generated by dual matching
given insertion of 𝑒 (𝑣6, 𝑣13) to 𝐺 ′ in Figure 1d.
incremental matchmapping 𝑒 (𝑢0, 𝑢1) to 𝑒 (𝑣2, 𝑣3). After that, we find
all matchesM𝑄𝑅

of𝑄𝑅 in𝐴 with the matching order (𝑢4, 𝑢3, 𝑢2) in
Figure 4d. Finally, we obtain incremental matches based onM𝑄𝑅

given the initial mapping {(𝑢0, 𝑣2), (𝑢1, 𝑣3)} in Figure 4e. Suppose

that 𝑒 (𝑣2, 𝑣3) is to be deleted from 𝐺 ′ in Figure 1c and the data

graph will evolve from𝐺 ′ in Figure 1c to𝐺 in Figure 1b. RapidFlow

will directly extract the local index in Figure 4c from the global



index in Figure 4b and enumerate incremental matches with the

same procedure as processing the insertion of 𝑒 (𝑣2, 𝑣3) in Figure

4d. After that, RapidFlow will delete 𝑒 (𝑣2, 𝑣3) from 𝐺 ′ and update

the global index in Figure 4b to that in Figure 4a.

Figure 5 illustrates incremental matches for the update in Figure

1d. After finding the set ΔM𝑒 (𝑢2,𝑢3) of incremental matches map-

ping 𝑒 (𝑢2, 𝑢3) to 𝑒 (𝑣6, 𝑣13), we generate ΔM𝑒 (𝑢2,𝑢4) by permutating

the sequence of query vertices instead of issuing a search procedure

for 𝑒 (𝑢2, 𝑢4), which avoids the redundant computation.

4 QUERY REDUCTION
We introduce the query reduction technique in this section.

4.1 Reduce CSM to BSM
According to Definition 2.1, each incremental match contains the

updated edge.

Fact 1. Given insertion of 𝑒 (𝑣𝑎, 𝑣𝑏 ), the set ΔM of incremental

matches is the set of matches𝑀 of𝑄 in𝐺 such that 𝑒 (𝑀−1 (𝑣𝑎), 𝑀−1 (𝑣𝑏 ))
belongs to 𝐸 (𝑄) where𝑀−1 is the inverse function of𝑀 .

Based on Fact 1, a straightforward incremental CSM method

is to 1) start a search procedure for each 𝑒 (𝑢𝑎, 𝑢𝑏 ) to find the set

ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) of matches mapping 𝑒 (𝑢𝑎, 𝑢𝑏 ) to 𝑒 (𝑣𝑎, 𝑣𝑏 ); and 2) ob-

tain ΔM by computing

⋃
𝑒∈𝐸 (𝑄) ΔM𝑒 . As ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) generally

accounts for a small portion of matches of 𝑄 in 𝐺 , the search for

𝑒 (𝑢𝑎, 𝑢𝑏 ) starts the enumeration by mapping 𝑒 (𝑢𝑎, 𝑢𝑏 ) to 𝑒 (𝑣𝑎, 𝑣𝑏 )
to ensure that each match reported in the Enumerate procedure

(see Algorithm 1) maps 𝑒 (𝑢𝑎, 𝑢𝑏 ) to 𝑒 (𝑣𝑎, 𝑣𝑏 ). Thus, this method

must put 𝑢𝑎, 𝑢𝑏 at the beginning of the matching order. However,

this requirement may lead to many invalid partial results, as illus-

trated in Section 2.4. To solve this problem, we propose the query

reduction technique that enables the enumeration of ΔM𝑒 with any

matching order.

Intuitively, matches in ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) appear in the region of 𝐺

around the updated edge 𝑒 (𝑣𝑎, 𝑣𝑏 ) because theymust contain 𝑒 (𝑣𝑎, 𝑣𝑏 ).
Therefore, if we can extract an affected region from 𝐺 given the

update such that each match in the region is a match in ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) ,
then we can obtain ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) by enumerating all matches in this

region.

Specifically, each match𝑀 ∈ ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) maps 𝑢𝑎, 𝑢𝑏 to 𝑣𝑎, 𝑣𝑏 ,

respectively, and therefore we only need to determine candidate

sets for remaining query vertices. According to Definition 2.1, query

vertices 𝑢 adjacent to 𝑢𝑎 (resp. 𝑢𝑏 ) must be mapped to the neigh-

bors of 𝑣𝑎 (resp. 𝑣𝑏 ) in𝑀 . Thus, the candidate set 𝐶 (𝑢) is a subset
of 𝑁 (𝑣𝑎) (resp. 𝑁 (𝑣𝑏 )). Similarly, the neighbors 𝑢 ′ of 𝑢 must be

mapped to the neighbors of candidates 𝑣 in 𝐶 (𝑢), and therefore

𝐶 (𝑢 ′) is a subset of⋃𝑣∈𝐶 (𝑢) 𝑁 (𝑣).
As a result, we can first obtain candidate sets for query vertices

adjacent to 𝑢𝑎, 𝑢𝑏 , then iteratively generate candidate sets for the

other query vertices based on the candidate sets of their neighbors,

and finally map query vertices excluding𝑢𝑎, 𝑢𝑏 to candidates to find

ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) . In short, we find ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) by enumerating matches

of 𝑄𝑅 = 𝑄 − {𝑢𝑎, 𝑢𝑏 } from candidate sets generated based on the

update.

Algorithm 3: Global Index
1 Procedure BuildGlobalIndex(𝑄,𝐺)
2 foreach 𝑢 ∈ 𝑉 (𝑄) do
3 𝐶𝐼 (𝑢) ← {𝑣 ∈ 𝑉 (𝐺) |𝐿 (𝑢) = 𝐿 (𝑣) ∧ 𝑁𝐿𝐹 (𝑢, 𝑣) is true};
4 foreach 𝑒 (𝑢,𝑢′) ∈ 𝐸 (𝑄) do
5 foreach 𝑣 ∈ 𝐶𝐼 (𝑢) do
6 𝐼𝑢

𝑢′ (𝑣) ← 𝑁 (𝑣) ∩𝐶𝐼 (𝑢′) ;

7 return 𝐼 ;

/* Maintain the index given an update. */

8 Procedure UpdateGlobalIndex(𝑄,𝐺, 𝐼, ⊕, 𝑒 (𝑣𝑎, 𝑣𝑏 ))
9 foreach {(𝑢,𝑢′), (𝑣, 𝑣′) } ∈ 𝐸 (𝑄) × {(𝑣𝑎, 𝑣𝑏 ), (𝑣𝑏 , 𝑣𝑎) } do
10 if 𝑣 ∈ 𝐶𝐼 (𝑢) and 𝑣′ ∈ 𝐶𝐼 (𝑢′) then
11 Add 𝑣′ to 𝐼𝑢

𝑢′ (𝑣) and add 𝑣 to 𝐼𝑢
′

𝑢 (𝑣′) ;

12 Δ𝐶𝐼 ← {};
13 foreach (𝑢, 𝑣) ∈ 𝑉 (𝑄) × {𝑣𝑎, 𝑣𝑏 } do
14 if 𝐿 (𝑢) = 𝐿 (𝑣) and 𝑣 ∉ 𝐶𝐼 (𝑢) and NLF(𝑢, 𝑣) is true then
15 Add 𝑣 to𝐶𝐼 (𝑢) and add (𝑢, 𝑣) to Δ𝐶𝐼 ;

16 foreach 𝑢′ ∈ 𝑁 (𝑢) where (𝑢, 𝑣) ∈ Δ𝐶𝐼 do
17 𝐼𝑢

𝑢′ (𝑣) ← 𝑁 (𝑣) ∩𝐶𝐼 (𝑢′) ;
18 Add 𝑣 to 𝐼𝑢

′
𝑢 (𝑣′) given 𝑣′ ∈ 𝐼𝑢

𝑢′ (𝑣) ;

4.2 Two-Level Indexing Mechanism
The efficiency of the query reduction technique highly depends

on the efficiency of extracting the affected region. To improve the

performance, we design a two-level indexing mechanism to obtain

the affected region.

Global Index. The goal of the first-level index, called the global

index, is to rule out data vertices irrelevant to the query. Specifically,

the global index 𝐼 is query-dependent; it maintains a candidate set

𝐶𝐼 (𝑢) for each query vertex𝑢 and records edges between candidates.

The candidate set𝐶𝐼 (𝑢) is global complete (Definition 4.1) in terms of

all matches of 𝑄 in𝐺 , where𝐺 is the data graph after the insertion.

Definition 4.1. Given 𝑄 and 𝐺 , the global complete candidate

set 𝐶𝐼 (𝑢) for 𝑢 ∈ 𝑉 (𝑄) is a set of data vertices 𝑣 such that if a

mapping (𝑢, 𝑣) appears in a match of 𝑄 in 𝐺 , then 𝑣 must belong

to 𝐶𝐼 (𝑢). If 𝐶𝐼 (𝑢) is global complete for each 𝑢 ∈ 𝑉 (𝑄), then 𝐼 is

global complete.

Given 𝑄 and 𝐺 , we build 𝐼 in the offline and dynamically up-

date it to keep its completeness online. Algorithm 3 depicts the

construction and update of the global index. Given𝑄 and𝐺 , Build-

GlobalIndex generates a candidate set for each query vertex based

on the neighbor label frequency (NLF) filter (Lines 2-3), which is a

widely used filtering rule [33]. Particularly, given 𝑢 ∈ 𝑉 (𝑄) and
𝑣 ∈ 𝑉 (𝐺), NLF requires that given 𝑙 ∈ 𝐿(𝑁 (𝑢)), |𝑁 (𝑢, 𝑙) | ⩽ |𝑁 (𝑣, 𝑙) |
where 𝐿(𝑁 (𝑢)) = {𝐿(𝑢 ′) |𝑢 ′ ∈ 𝑁 (𝑢)} (i.e., the set of labels of 𝑢’s
neighbors) and 𝑁 (𝑢, 𝑙) = {𝑢 ′ ∈ 𝑁 (𝑢) |𝐿(𝑢 ′) = 𝑙} (i.e., the set of

𝑢’s neighbors with label 𝑙). Next, Lines 4-6 record edges between

candidates in 𝐶𝐼 (𝑢) and 𝐶𝐼 (𝑢 ′) given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄). 𝐼𝑢
𝑢′ (𝑣) is the

set of 𝑣 ’s neighbors in 𝐶𝐼 (𝑢 ′).
UpdateGlobalIndex keeps the completeness of 𝐼 given the

updated edge 𝑒 (𝑣𝑎, 𝑣𝑏 ). Lines 9-18 presents the index update for the
insertion. Given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄), if 𝑣 and 𝑣 ′ belong to 𝐶𝐼 (𝑢) and
𝐶𝐼 (𝑢 ′), respectively, then Lines 9-11 add 𝑒 (𝑣, 𝑣 ′) to 𝐼 . Lines 13-15

compute the modification on candidate sets. As the insertion of



Algorithm 4: Local Index
1 Procedure BuildLocalIndex(𝑄𝑅, 𝐼 , 𝑒 (𝑢𝑎,𝑢𝑏 ), 𝑒 (𝑣𝑎, 𝑣𝑏 ))
2 if 𝑣𝑎 ∉ 𝐶𝐼 (𝑢𝑎) or 𝑣𝑏 ∉ 𝐶𝐼 (𝑢𝑏 ) then return;
3 𝑀 ← {(𝑢𝑎, 𝑣𝑎), (𝑢𝑏 , 𝑣𝑏 ) };
4 Φ← 𝑉 (𝑄𝑅 ) ∩ (𝑁𝑄 (𝑢𝑎) ∪ 𝑁𝑄 (𝑢𝑏 )) ;
5 foreach 𝑢 ∈ Φ do
6 𝐶𝐴 (𝑢) ←

⋂
𝑢′∈𝑁𝑄 (𝑢)∩{𝑢𝑎 ,𝑢𝑏 } 𝐼

𝑢′
𝑢 (𝑀 (𝑢′)) − {𝑣𝑎, 𝑣𝑏 };

7 𝛿 ← sort vertices 𝑢 ∈ Φ in the ascending order of |𝐶𝐴 (𝑢) |;
8 foreach 𝑢 ∈ Φ along the order of 𝛿 do
9 foreach 𝑢′ ∈ 𝑁𝛿

+ (𝑢) do
10 𝐶𝐴 (𝑢) ← 𝐶𝐴 (𝑢)

⋂(⋃𝑣∈𝐶𝐴 (𝑢′) 𝐼
𝑢′
𝑢 (𝑣)) ;

11 Φ← 𝑉 (𝑄𝑅 ) − Φ;
12 while Φ ≠ ∅ do
13 𝑢 ← 𝑎𝑟𝑔max

𝑢′∈Φ |𝑁 (𝑢) − Φ |;
14 𝐶𝐴 (𝑢) ← 𝐶𝐼 (𝑢) − {𝑣𝑎, 𝑣𝑏 };
15 foreach 𝑢′ ∈ 𝑁 (𝑢) − Φ do
16 Do the same operation as Line 10;

17 Remove 𝑢 from Φ;

18 foreach 𝑒 (𝑢,𝑢′) ∈ 𝐸 (𝑄𝑅 ) do
19 foreach 𝑣 ∈ 𝐶𝐴 (𝑢) do
20 𝐴𝑢

𝑢′ (𝑣) ← 𝐼𝑢
𝑢′ (𝑣) ∩𝐶𝐴 (𝑢′) ;

21 return 𝐴;

𝑒 (𝑣𝑎, 𝑣𝑏 ) updates 𝑁 (𝑣𝑎) and 𝑁 (𝑣𝑏 ) in𝐺 , we only check whether 𝑣𝑎
and 𝑣𝑏 can be inserted into certain candidate sets based on NLF. If

so, we add it to𝐶𝐼 (𝑢) and record the update in Δ𝐶𝐼 . Next, we update

edges between candidates in 𝐼 correspondingly (Lines 16-18).

Example 4.2. Figure 4a demonstrates 𝐼 given 𝑄 and 𝐺 in Figure

1. 𝐼
𝑢1

𝑢0
(𝑣1) = {𝑣0, 𝑣2}. Although 𝐿(𝑣3) = 𝐿(𝑢1) in Figure 1b, 𝑣3 ∉

𝐶𝐼 (𝑢1) because |𝑁 (𝑣3, 𝐴) | = 0, which is less than |𝑁 (𝑢1, 𝐴) | = 1.

Given insertion of 𝑒 (𝑣2, 𝑣3) in Figure 1c, 𝑁𝐿𝐹 (𝑢1, 𝑣3) is true. There-
fore, we add 𝑣3 to 𝐶𝐼 (𝑢1) and update edges between candidates in

Figure 4b.

Local Index. The second-level index, called the local index, is

built on top of the global index for each update. In particular, the

local index 𝐴 is update-dependent, which keeps a candidate set

𝐶𝐴 (𝑢) for 𝑢 ∈ 𝑉 (𝑄𝑅) and maintains edges between candidate sets

𝐶𝐴 (𝑢) and 𝐶𝐴 (𝑢 ′) if 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄𝑅). 𝐶𝐴 (𝑢) is local complete

(Definition 4.3). Therefore, the local index is the affected region

where we can find incremental matches.

Definition 4.3. Given 𝑄 , 𝐺 , the updated edge 𝑒 (𝑣𝑎, 𝑣𝑏 ) and the

query edge 𝑒 (𝑢𝑎, 𝑢𝑏 ) that maps to 𝑒 (𝑣𝑎, 𝑣𝑏 ), the local complete can-

didate set 𝐶𝐴 (𝑢) for 𝑢 ∈ 𝑉 (𝑄𝑅) is a set of data vertices 𝑣 such that

if a mapping (𝑢, 𝑣) belongs to a match in the set ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) of
incremental matches mapping 𝑒 (𝑢𝑎, 𝑢𝑏 ) to 𝑒 (𝑣𝑎, 𝑣𝑏 ), then 𝑣 must

belong to 𝐶𝐴 (𝑢). If 𝐶𝐴 (𝑢) is local complete for each 𝑢 ∈ 𝑉 (𝑄𝑅),
then 𝐴 is local complete.

The local index is generated for each update and immediately

destroyed after the search procedure. Algorithm 4 presents the

generationmethod of the local index. Given a query vertex𝑢,𝑁𝑄 (𝑢)
and 𝑁 (𝑢) denote the neighbors of 𝑢 in 𝑄 and 𝑄𝑅 , respectively.

𝑒 (𝑣𝑎, 𝑣𝑏 ) is the updated data edge and 𝑒 (𝑢𝑎, 𝑢𝑏 ) is the target query
edge.𝑀 records initial mappings (Line 3). Lines 4-6 compute𝐶𝐴 (𝑢)

based on 𝑣𝑎 and 𝑣𝑏 where 𝑢 ∈ Φ (i.e., query vertices adjacent to

𝑢𝑎, 𝑢𝑏 ). After that, Lines 7-10 prune candidate sets 𝐶𝐴 (𝑢) for 𝑢 ∈ Φ
based on the filtering rule: we can remove 𝑣 from 𝐶𝐴 (𝑢) without
breaking its completeness if there exists 𝑢 ′ ∈ 𝑁𝛿

+ (𝑢) such that 𝑣 has

no neighbor in𝐶𝐴 (𝑢 ′) where 𝑁𝛿
+ (𝑢) is the set of vertices positioned

before 𝑢 in a sequence 𝛿 of Φ. In particular, 𝛿 prioritizes query

vertices with fewer candidates to utilize small candidate sets to

prune large ones. Given 𝑢 ′ ∈ 𝑁𝛿
+ (𝑢), we first compute the union of

neighbors of candidates in𝐶𝐴 (𝑢 ′) based on 𝐼 (i.e.,
⋃

𝑣∈𝐶𝐴 (𝑢′) 𝐼
𝑢′
𝑢 (𝑣)

at Line 10), and then intersect the union with 𝐶𝐴 (𝑢) to eliminate

invalid candidates. Lines 11-17 generate candidate sets for 𝑢 ∈ Φ
(i.e., query vertices not adjacent to 𝑢𝑎, 𝑢𝑏 ). At each step, we select

𝑢 ∈ Φwho has the largest number of neighbors that have candidate

sets generated. Based on Definitions 4.1 and 4.3, 𝐶𝐼 (𝑢) must be

local complete. As such, Lines 14-16 initialize 𝐶𝐴 (𝑢) as 𝐶𝐼 (𝑢) and
prune it with the same method as Line 10. Finally, we record edges

between candidates in 𝐶𝐴 (𝑢) and 𝐶𝐴 (𝑢 ′) if 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄𝑅).
Example 4.4. Given the updated edge 𝑒 (𝑣2, 𝑣3) and the query

edge 𝑒 (𝑢0, 𝑢1) mapped to 𝑒 (𝑣2, 𝑣3), the mapping𝑀 is initialized to

{(𝑢0, 𝑣2), (𝑢1, 𝑣3)}. Figure 4c presents the local index given𝑀 . As

𝑢2 is adjacent to 𝑢1, 𝐶𝐴 (𝑢2) = 𝐼
𝑢1

𝑢2
(𝑀 (𝑢1)) = {𝑣6, 𝑣7, 𝑣8}. Next, we

generate𝐶𝐴 (𝑢3) by pruning𝐶𝐼 (𝑢3) based on𝐶𝐴 (𝑢2). 𝑣10 is invalid
since 𝑣10 has no neighbor in𝐶𝐴 (𝑢2). Thus,𝐶𝐴 (𝑢3) = {𝑣11, 𝑣12, 𝑣13}.
Next, we generate 𝐶𝐴 (𝑢4) by pruning 𝐶𝐼 (𝑢4) based on 𝐶𝐴 (𝑢2) and
𝐶𝐴 (𝑢3). 𝑣10 has no neighbor in 𝐶𝐴 (𝑢2), and 𝑣11 has no neighbor

in 𝐶𝐴 (𝑢3). Therefore, 𝐶𝐴 (𝑢4) = {𝑣12, 𝑣13}. Finally, we add edges

between candidate sets if 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄𝑅) where𝑄𝑅 is the triangle

in 𝑄 .

4.3 Analysis
In the following, we analyze the time and space cost, and discuss

the connections with existing work.

Time and Space. We first analyze the cost of the global in-

dex. Given 𝑢 ∈ 𝑉 (𝑄) and 𝑣 ∈ 𝑉 (𝐺), we perform NLF check on

𝑁 (𝑣). Thus, the time complexity of generating candidate sets (Lines

2-3 in Algorithm 3) is 𝑂 (∑𝑢∈𝑉 (𝑄)
∑

𝑣∈𝑉 (𝐺) 𝑑 (𝑣)) = 𝑂 ( |𝑉 (𝑄) | ×
|𝐸 (𝐺) |). Given two sets 𝑆1, 𝑆2 where |𝑆1 | ⩽ |𝑆2 |, the cost of set

intersection on them is 𝑂 ( |𝑆1 |) [1]. Then, the time complexity of

recording edges between candidates (Lines 4-6 in Algorithm 3) is

𝑂 (∑𝑒 (𝑢,𝑢′) ∈𝐸 (𝑄)
∑

𝑣∈𝐶𝐼 (𝑢) 𝑑 (𝑣)) = 𝑂 ( |𝐸 (𝑄) | × |𝐸 (𝐺) |). Thus, the
time complexity of building the global index is 𝑂 ( |𝐸 (𝑄) | × |𝐸 (𝐺) |).
The space complexity is 𝑂 ( |𝑉 (𝑄) | × |𝑉 (𝐺) | + |𝐸 (𝑄) | × |𝐸 (𝐺) |).

The neighbor set is sorted in the index. The cost of adding an

edge 𝑒 (𝑣, 𝑣 ′) to 𝐼𝑢
𝑢′ (𝑣) is 𝑂 (log |𝐼

𝑢
𝑢′ (𝑣) |) = 𝑂 (𝑑 (𝑣)). For simplicity,

we use the average degree 𝑑 of 𝐺 in the analysis. Thus, the cost of

Lines 9-11 is𝑂 ( |𝐸 (𝑄) | × log𝑑). The cost of updating candidate sets
and neighbor sets is𝑂 ( |𝑉 (𝑄) |×𝑑+|𝑉 (𝑄) |×𝑑×log𝑑). Therefore, the
time cost of updating the global index given an update is𝑂 ( |𝐸 (𝑄) |×
log𝑑 + |𝑉 (𝑄) | × 𝑑 × log𝑑).

Next, we analyze the cost of the local index. Given 𝑒 (𝑢,𝑢 ′) ∈
𝐸 (𝑄), the cost of pruning𝐶𝐴 (𝑢)with𝐶𝐴 (𝑢 ′) is𝑂 (

∑
𝑣∈𝐶𝐼 (𝑢′) |𝐼

𝑢′
𝑢 (𝑣) |) =

𝑂 ( |𝐼𝑢′𝑢 |) where |𝐼𝑢
′

𝑢 | is the number of edges between 𝐶𝐼 (𝑢) and
𝐶𝐼 (𝑢 ′). Lines 8-17 in Algorithm 4 utilize each edge in𝑄𝑅 to generate

candidate sets. Thus, the time complexity is𝑂 (∑𝑒 (𝑢,𝑢′) ∈𝐸 (𝑄𝑅 ) |𝐼
𝑢
𝑢 |).

The time complexity of recording edges is the same as the pruning.

Therefore, the time and space complexity of constructing the local



index is𝑂 (∑𝑒 (𝑢,𝑢′) ∈𝐸 (𝑄𝑅 ) |𝐼
𝑢
𝑢 |). In practice, the construction of the

local index is very efficient as only a small portion of vertices in 𝐼

is involved in the computation for each update.

Discussion. Given 𝑒 (𝑢𝑎, 𝑢𝑏 ), 𝑄𝑅 = 𝑄 − {𝑢𝑎, 𝑢𝑏 } can be a dis-

connected graph. The Enumerate procedure in Algorithm 1 can

handle disconnected graphs by setting 𝐶𝑀 (𝑢) to 𝐶𝐴 (𝑢) at Line 21
if 𝑁

𝜑
+ (𝑢) = ∅.
Latest algorithms [18, 23] build an index to serve the enumeration

as presented in Section 2.3. Such an index has the same structure

as the global index. These algorithms keep candidate sets global

complete given the stream, and utilize advanced filtering rules to

prune invalid candidates. Formally, the rule is: given 𝑢 ∈ 𝑉 (𝑄) and
𝑣 ∈ 𝐶𝐼 (𝑢), 𝑣 has at least one neighbor in𝐶𝐼 (𝑢 ′) for each 𝑢 ′ ∈ 𝑁 (𝑢).
This rule is widely used in both CSM and BSM approaches [33]. The

cost of maintaining the index for each update is𝑂 ( |𝐸 (𝑄) | × |𝐸 (𝐺) |)
in SymBi [23], the latest CSM algorithm. Although these rules can

be applied to our global index, we use a simpler filtering rule (i.e.,

NLF) because 1) the overhead of complex filtering rules may offset

the benefit on short-running queries; and 2) the simple filtering

rule is sufficient for pruning candidate sets in the global index.

In summary, our two-level indexing mechanism consisting of

the global index and the local index has a lower maintenance cost

than existing CSM approaches because the global index 𝐼 uses a

simple filtering rule and the affected part for each update in 𝐼 is

small. In case an affected region is large, our index maintenance

cost can be higher than existing methods because of the local index.

However, the benefit of our approach offsets the overhead because

there are many incremental results in a large affected region and

therefore the enumeration time dominates the cost of processing

the update. We evaluate the query reduction technique in Section

6.3.1.

5 DUAL MATCHING
We introduce the dual matching technique in this section.

5.1 Reverse Roles of Query and Data Graphs
Given a match from 𝑄 to 𝐺 , the subgraph 𝐺 ′ consisting of the

matched edges of𝐺 is isomorphic to𝑄 . Let𝑄 ′ be a graph isomorphic

to 𝑄 . 𝐺 ′ is isomorphic to 𝑄 ′ because the subgraph isomorphism

relation is transitive. We start |𝐸 (𝑄) | search procedures each of

which finds the set ΔM𝑒 of incremental matches mapping 𝑒 ∈ 𝐸 (𝑄)
to the updated data edge. Intuitively, if 𝑒 ′ can be mapped to 𝑒 in

an automorphism of 𝑄 , then each subgraph of matches in ΔM𝑒

appear in a match in ΔM𝑒′ . In other words, there is a one-to-one

mapping relationship between matches in ΔM𝑒 and ΔM𝑒′ , which

is described formally in the following proposition.

Proposition 5.1. Given an automorphism 𝑀𝑄 of 𝑄 , 𝑒 denotes

𝑒 (𝑢𝑎, 𝑢𝑏 ) ∈ 𝐸 (𝑄) and 𝑒 ′ denotes 𝑒 (𝑀𝑄 (𝑢𝑎), 𝑀𝑄 (𝑢𝑏 )) ∈ 𝐸 (𝑄). Then,
ΔM𝑒′ is equal to {𝑀 ◦ 𝑀𝑄 |𝑀 ∈ ΔM𝑒 } where ◦ is the function

composition operation.

Proof. LetM be {𝑀 ◦ 𝑀𝑄 |𝑀 ∈ ΔM𝑒 }. We first showM ⊆
ΔM𝑒′ . Suppose 𝑀

′ = 𝑀 ◦ 𝑀𝑄 where 𝑀 ∈ ΔM𝑒 . As 𝑀𝑄 and 𝑀

are bijective functions, 𝑀 ′ must also be a bijective function and

𝑀 ′(𝑢) = 𝑀 (𝑀𝑄 (𝑢)) given 𝑢 ∈ 𝑉 (𝑄). Given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄), we
have 𝑒 (𝑀𝑄 (𝑢), 𝑀𝑄 (𝑢 ′)) ∈ 𝐸 (𝑄) since𝑀𝑄 is a match of 𝑄 in 𝑄 . As

Algorithm 5: Dual Matching

1 Procedure GenerateAutoSet(𝑄)
2 M𝑄 ← find matches of𝑄 in𝑄 ;

3 X ← ∅;
4 foreach 𝑒 (𝑢,𝑢′) ∈ 𝐸 (𝑄) do
5 if 𝑒 (𝑢,𝑢′) is not selected then
6 𝑋 ← ∅;
7 foreach𝑀𝑄 ∈ M𝑄 do
8 if 𝑒 (𝑀𝑄 (𝑢), 𝑀𝑄 (𝑢′)) is not selected then
9 𝑋 ← 𝑋 ∪ {(𝑒 (𝑀𝑄 (𝑢), 𝑀𝑄 (𝑢′)), 𝑀𝑄 ) };

10 Mark 𝑒 (𝑀𝑄 (𝑢), 𝑀𝑄 (𝑢′)) as selected;

11 X ← X ∪ {𝑋 };

12 return X;
13 Procedure DualMatch(ΔM𝑒 , 𝑋)
14 foreach (𝑒′, 𝑀𝑄 ) ∈ 𝑋 do
15 if 𝑒′ ≠ 𝑒 then ΔM𝑒′ ← {𝑀 ◦𝑀𝑄 |𝑀 ∈ ΔM𝑒 };
16 ΔM𝑋 ←

⋃
𝑒∈𝑋 ΔM𝑒 ;

17 return ΔM𝑋 ;

𝑀 is a match of𝑄 in𝐺 , we have 𝑒 (𝑀 (𝑀𝑄 (𝑢)), 𝑀 (𝑀𝑄 (𝑢 ′))) ∈ 𝐸 (𝐺).
Therefore,𝑀 ′ is a bijective function that satisfies given 𝑒 (𝑢,𝑢 ′) ∈
𝐸 (𝑄), 𝑒 (𝑀 ′(𝑢), 𝑀 (𝑢)) ∈ 𝐸 (𝐺). Because𝑀 maps 𝑒 (𝑢𝑎, 𝑢𝑏 ) (i.e., 𝑒) to
the updated edge, we have𝑀 ′ maps 𝑒 (𝑀𝑄 (𝑢𝑎), 𝑀𝑄 (𝑢𝑏 )) (i.e., 𝑒 ′) to
it. Thus,𝑀 ′ belongs to ΔM𝑒′ andM ⊆ ΔM𝑒′ . Similarly, we have

ΔM𝑒′ ⊆ M. Therefore, the proposition holds. □

According to the proposition, we have the following two obser-

vations on the impact of automorphisms in CSM. First, automor-

phisms that do not map each query vertex to itself lead to redundant

computation. Second, the set of subgraphs of𝐺 corresponding to

matches in ΔM𝑒 is the same as that in ΔM𝑒′ if 𝑒 can be mapped to

𝑒 ′ in an automorphism.

Based on these observations, we propose the dual matching tech-

nique to eliminate redundant computation incurred by automor-

phisms of 𝑄 . In principle, the procedure of enumerating matches

permutates data vertices to find results. In contrast, given ΔM𝑒 ,

the dual matching technique swaps the roles of query and data

graphs and enumerates matches by permutating query vertices to

find ΔM𝑒′ based on Proposition 5.1.

5.2 Incremental Matching based on Auto-Sets
Based on automorphisms of𝑄 , the dual matching technique groups

query edges into a set X of auto-sets 𝑋 (Definition 5.2). Gener-

ateAutoSet in Algorithm 5 presents the techniques. Given 𝑒 (𝑢,𝑢 ′) ∈
𝐸 (𝑄) that does not belong to any auto-sets, Lines 6-11 iterate each

match𝑀𝑄 ∈ M𝑄 to find query edges 𝑒 (𝑀𝑄 (𝑢), 𝑀𝑄 (𝑢 ′)) and group
these edges into a new auto-set. 𝑋 records the edge and the cor-

responding match (Line 9). As a query graph has at least one au-

tomorphism (i.e., the match mapping each query vertex to itself),

the function ensures that each query edge belongs to exactly one

auto-set. Auto-sets are generated in the offline processing stage,

since 𝑄 is fixed during the online processing.

Definition 5.2. LetM𝑄 denote the automorphisms of𝑄 . An auto-

set 𝑋 is a set of query edges that satisfies the following condition:



given any two edges 𝑒 (𝑢𝑎, 𝑢𝑏 ), 𝑒 (𝑢 ′𝑎, 𝑢 ′𝑏 ) ∈ 𝑋 , there exists 𝑀𝑄 ∈
M𝑄 such that 𝑢𝑎 = 𝑀𝑄 (𝑢 ′𝑎) and 𝑢𝑏 = 𝑀𝑄 (𝑢 ′𝑏 ).

Given ΔM𝑒 and the auto-set 𝑋 that 𝑒 belongs to, DualMatch

generates incremental matches for remaining edges 𝑒 ′ in 𝑋 . Partic-

ularly, Line 15 loops over𝑀 ∈ ΔM𝑒 and generates ΔM𝑒′ based on

Proposition 5.1 where𝑀𝑄 is the automorphism mapping 𝑒 to 𝑒 ′. Fi-
nally, we union the results and return the set ΔM𝑋 of incremental

matches that map edges in 𝑋 to the updated edge.

Optimization. To further improve the performance, we op-

timize the procedure of generating matches for auto-sets 𝑋 . In

practice, ΔM𝑒 is stored as a table where the header is a sequence

of query vertices (..., 𝑢𝑖 , ...) and each tuple is a sequence of data

vertices. Figure 3 presents an example. Given 𝑒 ′ ∈ 𝑋 and the cor-

responding automorphism𝑀𝑄 , we can generate ΔM𝑒′ by simply

adding another header (..., 𝑀𝑄 (𝑢𝑖 ), ...) instead of iterating each

match in ΔM𝑒 . Therefore, the set ΔM𝑋 is stored as a table with

|𝑋 | headers each of which is a sequence of query vertices based on

automorphisms of 𝑄 .

Example 5.3. Given𝑄 in Figure 1a,M𝑄 = {𝑀1 = {(𝑢0, 𝑢0), (𝑢1, 𝑢1),
(𝑢2, 𝑢2), (𝑢3, 𝑢3), (𝑢4, 𝑢4)}, 𝑀2 = {(𝑢0, 𝑢0), (𝑢1, 𝑢1), (𝑢2, 𝑢2), (𝑢3, 𝑢4),
(𝑢4, 𝑢3)}}. The set X of auto-sets is {𝑋1 = {(𝑒 (𝑢0, 𝑢1), 𝑀1)}, 𝑋2 =

{(𝑒 (𝑢1, 𝑢2), 𝑀1)}, 𝑋3 = {(𝑒 (𝑢3, 𝑢4), 𝑀1)}, 𝑋4 = {(𝑒 (𝑢2, 𝑢3), 𝑀1),
(𝑒 (𝑢2, 𝑢4), 𝑀2)}}. Given insertion of 𝑒 (𝑣6, 𝑣13), suppose that we ob-
tain ΔM𝑒 (𝑢2,𝑢3) in Figure 3. As 𝑒 (𝑢2, 𝑢3) ∈ 𝑋4, the dual matching

technique generates ΔM𝑋4
by adding a header based on𝑀2. The

results are shown in Figure 5. Thus, we do not need to execute a

search procedure for 𝑒 (𝑢2, 𝑢4).

5.3 Analysis
In the following, we analyze the time and space cost of the dual

matching.

Time and Space. After findingM𝑄 , the time complexity of

GenerateAutoSet is 𝑂 ( |𝐸 (𝑄) | × |M𝑄 |). As the query graph is

small, the procedure is fast. Given𝑋 and ΔM𝑒 , the time complexity

of DualMatch is 𝑂 (( |𝑋 | − 1) × |ΔM𝑒 |). The optimization avoids

iterating each match in ΔM𝑒 and reduces the cost to𝑂 (( |𝑋 | − 1) ×
|𝑉 (𝑄) |).
X generated by Algorithm 5 maintains an automorphism 𝑀𝑄

for each query edge and has no duplicate query edge. Therefore,

the space cost of storing X is 𝑂 ( |𝐸 (𝑄) | × |𝑉 (𝑄) |). If we need to

store incremental matches for the update, then the space cost of

the dual matching is 𝑂 ( |𝑉 (𝑄) | × ∑
𝑋 ∈X |ΔM𝑋 |) where ΔM𝑋 is

the set of incremental matches mapping edges in 𝑋 to the updated

edge. Otherwise, we can find an incremental match and emit it

immediately. Therefore, the space cost of maintaining the output is

negligible.

Discussion. Given 𝑄 , 𝐺 and ΔG, for simplicity, assume that

finding incremental matches mapping 𝑒 ∈ 𝐸 (𝑄) to the updated

edges in the entire stream takes 𝑇 time. The cost of processing the

stream can be estimated as𝑇 × |𝐸 (𝑄) |. The dual matching technique

reduces the execution time to 𝑇 × |X|. Thus, the speedup on the

entire stream is
|𝐸 (𝑄) |
|X | . For example, the speedup on the entire

stream given 𝑄 in Figure 1 is 1.25 under the assumption because

|𝐸 (𝑄) | = 5 and |X| = 4. In contrast, the speedup for the update in

Example 5.3 is 2 because the cost of finding incremental matches

for 𝑋1−3 can be neglected for this update. We evaluate the dual

matching technique in Section 6.3.2.

The symmetry-breaking technique [12] eliminates duplicate re-

sults in the subgraph enumeration problem [25, 28], which is to

find all subgraphs in the data graph identical to the query graph.

Symmetry-breaking assigns partial orders to query vertices and

requires data vertices mapped to query vertices to satisfy these

orders. However, this technique cannot be directly applied to CSM

because it may miss valid results. Moreover, it may issue more

sub-queries than our dual matching technique on update streams.

6 EXPERIMENTAL RESULTS
We conduct experiments to evaluate the performance of RapidFlow.

6.1 Experiment Setup
In our experiments, we compare RapidFlow (named RF) with Tur-

boFlux (named TF) [18] and SymBi (named SYM) [23], which are

state-of-the-art CSM methods. RapidFlow utilizes the ordering

method of RI [5] to generate the matching order for enumerat-

ing matches of 𝑄𝑅 in the local index, because previous studies on

BSM [33] show that the ordering method of RI is simple and effec-

tive. For a fair comparison, we implement all competing algorithms

in C++ and optimize them with our best efforts. The source code

is compiled with g++ 8.3.1. We conduct experiments on a Linux

server with two Intel Xeon Gold 5218 CPUs and 512GB DRAM.

Table 3: The detailed information of datasets. |Σ𝑉 | is the
number of distinct vertex labels. |Σ𝐸 | is the number of distinct
edge labels. 𝑑𝑎𝑣𝑔 is the average degree. 𝑑𝑚𝑎𝑥 is the maximum
degree. 𝑐𝑚𝑎𝑥 is the maximum core value.
Datasets |𝑉 | |𝐸 | |Σ𝑉 | |Σ𝐸 | 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥 𝑐𝑚𝑎𝑥

Amazon (az) 0.4M 2.4M 6 1 12.2 0.2M 10

LiveJournal (lj) 4.9M 42.9M 30 1 18.1 4.3M 350

Netflow (nf ) 3.1M 2.9M 1 7 2.0 0.2M 8

LSBench (ls) 5.2M 20.3M 1 44 8.2 2.3M 27

Data Graphs. We use Netflow and LSBench in our experiments

to keep consistent with previous work [18, 23]. Netflow is a real-

world dynamic graph representing passive traffic traces [6]. LS-

Bench is a synthetic dynamic social network generated by Linked

Stream Benchmark [19]. Netflow and LSBench have 7 and 44 dis-

tinct edge labels, respectively, and all vertices in both graphs have

the same label. The edge label distribution is highly skewed. For

example, 70.9% edges in Netflow have the same label.

Following existing research on streaming graphs [16, 21], we

further generate dynamic graphs from static graphs including Ama-

zon and LiveJournal by randomly sampling edges as the update

stream. As the original datasets are unlabeled, we assign labels from

a label set to vertices randomly. Table 3 presents the statistics of

datasets. We can see that the datasets in our experiments cover a

wide range of settings, e.g., the graph size, the graph density and

the label distribution.

The insertion (resp. deletion) rate is the ratio of the number

of edge insertions (resp. deletions) to the number of edges in the

dataset. We set the rate to 10%, the same as previous work [16,

21]. Because competing algorithms are generally symmetric (i.e.,



processing insertion and deletion with the same algorithm), we

report the results on the insertion stream for brevity.

Query Graphs. Following previous work [18, 23], we obtain

query graphs by randomly extracting connected subgraphs from

the data graph and categorize queries into tree queries and cyclic

queries. Moreover, following previous studies on batch subgraph

matching [4, 13], we classify cyclic query graphs into sparse queries

(𝑑𝑎𝑣𝑔 ⩽ 3) and dense queries (𝑑𝑎𝑣𝑔 > 3) to study the performance

of competing algorithms on queries with different densities. Note

that if the threshold increases further, there will be few incremental

matches of dense queries since real-world graphs are sparse. We in-

crease |𝑉 (𝑄) | from 4 to 12 at a step of 2. We do not further increase

the query size because most of the data graph will involve in the

computation for each update if the query graph is big and conse-

quently the CSM problem is close to the BSM problem. For each

query type and size, we generate a query set containing 100 queries.

We report experiment results on the query sets with |𝑉 (𝑄) | = 6 by

default.

Metrics. The offline preprocessing stage of all competing algo-

rithms in our paper is efficient. Therefore, we focus on evaluating

the online processing. We measure the query time, which is the

elapsed time of processing the stream online, of each algorithm. The

query time excludes the time of modifying the data graph because

the overhead is the same for all algorithms. To complete our exper-

iments in a reasonable time, we set the time limit for each query to

one hour. If a query cannot be completed within the time limit, we

terminate the query and mark it as unsolved. If the algorithm finds

fewer than 10
9
results on a unsolved query, the query is marked as

a hard unsolved query.

Given a set 𝑌 of competing algorithms and a query set Q, Q ′
is the set of queries that all algorithms in 𝑌 can complete within

the time limit, and Q ′ is the supplementary set of 𝑄 ′ (i.e., the set
of queries that at least one algorithm in 𝑌 cannot complete within

the time limit). The average query time 𝑡𝑦 of an algorithm 𝑦 ∈ 𝑌
on Q is equal to

1

|Q′ |
∑
𝑄 ∈Q′ 𝑡𝑦 (𝑄) where 𝑡𝑦 (𝑄) is the query time

of 𝑦 on 𝑄 . We also count the number of unsolved queries for each

algorithm and measure the number of edges processed on the query

in Q ′ to study their performance on unsolved queries.

Moreover, we evaluate the response time, which is the time find-

ing one incremental match, for each relevant update. Specifically, a

relevant update given 𝑄 is an update Δ𝐺 in the stream such that at

least one edge 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄) has the same label as the updated

edge 𝑒 (𝑣, 𝑣 ′) in Δ𝐺 (i.e., 𝐿(𝑢) = 𝐿(𝑣) and 𝐿(𝑢 ′) = 𝐿(𝑣 ′)). We omit

the irrelevant updates in the stream because the cost of pruning

them with the label filter is negligible. The query time (resp. index

update time) per update is also computed in terms of the relevant

updates in the stream. Additionally, we evaluate the candidate set

size for each query vertex to study the pruning power.

6.2 Overall Comparison
Average Query Time. Figure 6 presents the average query time

one each query set. As shown in the figure, TF runs faster than

SYM on tree queries, but slower on cyclic queries. In contrast, RF

significantly outperforms both TF and SYM on each query set and

the speedups are up to two orders of magnitude, e.g., on tree and

sparse queries on nf. As the query time on different queries varies

greatly and algorithms can have performance variance on different

queries, the average value can hide the performance of competing

algorithms on each individual query. Therefore, we measure the

speedup of RF on each query.
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Figure 6: Comparison of competing methods on average
query time.

Individual Speedup.We measure the speedup of RF over TF

and SYM on each query in Figure 7. The individual speedup on a

query 𝑄 is computed by
𝑡𝑎 (𝑄)
𝑡𝑅𝐹 (𝑄) where 𝑡𝑅𝐹 (𝑄) is the query time

of RF and 𝑡𝑎 (𝑄) is the query time of TF or SYM. We can see that

there is no value below 1, which shows that RF outperforms SYM

and TF on all cases that competing algorithms can complete within

the time limit. The speedups are up to four orders of magnitude

on some cases. These results demonstrate the high performance of

RapidFlow.
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Figure 7: Individual speedup of RF over TF and SYM in terms
of the query time. Each dot denotes the speedup on a query.

Unsolved Queries.We count the number of unsolved queries,

including hard unsolved queries, for each algorithm in Table 4. As

shown in the table, TF has more unsolved queries than SYM and

RF. RF significantly reduces the number of unsolved queries, for

example, RF has no unsolved queries on lj. Moreover, both TF and

SYM have hard unsolved queries, which cause performance issues.

In contrast, RF has no hard unsolved queries. In other words, the

unsolved queries in RF are because of the large number of results.

For example, RF has 16 unsolved tree queries on nf where RF reports

as many as 10
12

results in one hour.

To compare the performance of competing algorithms on un-

solved queries, we measure the number of relevant updates pro-

cessed on unsolved queries in Figure 8. There are in total 116 queries

that at least one algorithm cannot complete within the time limit

on the four data graphs. The number of relevant updates processed

by either TF or SYM is fewer than or equal to that of RF on all these

queries except one where TF deals with 177209 relevant updates

while RF handles 163375. Both TF and SYM encounter performance



Table 4: The number of unsolved queries and hard unsolved
queries. The unsolved queries include hard unsolved ones.
az is omitted because there is no unsolved query on az.

Query
Structure Method #Unsolved Queries #Hard Unsolved

lj nf ls lj nf ls

Tree

TF 3 38 11 0 3 0

SYM 4 41 12 0 1 0

RF 0 16 9 0 0 0

Sparse

TF 0 20 35 0 15 32

SYM 0 11 4 0 6 1

RF 0 0 3 0 0 0

Dense

TF 0 1 2 0 1 2

SYM 0 0 0 0 0 0

RF 0 0 0 0 0 0

Total

TF 3 59 48 0 19 34

SYM 4 52 16 0 7 1

RF 0 16 12 0 0 0

issues on some queries and consequently process much fewer up-

dates than RF. The results demonstrate the performance advantage

of RF on unsolved queries.
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Figure 8: Comparison of competing methods on the num-
ber of relevant updates processed on unsolved queries. The
query ID is labeled in the ascending order of relevant updates
processed by RF.

6.3 Evaluation of Individual Techniques
In this subsection, we evaluate the effectiveness of the query reduc-

tion and dual matching, respectively.

6.3.1 Effectiveness of Query Reduction. We first evaluate the effec-

tiveness of the query reduction technique by measuring the number

of partial results generated in the enumeration.

Partial Results. Figure 9 illustrates the average number of par-

tial results (excluding final results) generated in the enumeration

for each query set. The value of each query is normalized to the

min value among competing algorithms. The value of RF is close

to one and therefore RF generally generates the minimum number

of partial results for each query. In contrast, TF and SYM lead to

much more partial results than RF. The experiment results show

that existing CSM approaches generate many invalid partial results,

and utilizing the well-studied BSM techniques can significantly

reduce the search space size. Thus, the query reduction technique,

which reduces CSM to BSM, is an efficient approach for CSM.

Candidate Set Size.We evaluate the pruning power of the global

index by comparing the candidate set size for each query vertex

with that in indexes of TF and SYM. As the index is frequently

updated given the stream, we use the index for the data graph after
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Figure 9: Comparison of competing methods on #partial re-
sults generated in the enumeration.
applying the entire stream in the comparison. Figure 10 presents the

average candidate set size for each query vertex. We can see that RF

achieves competitive performance although it uses a simple filtering

rule. In some cases, RF even has fewer candidates than SYM, which

adopts a complex filter rule. Looking into these cases, we find the

reason is the filter rule of SYM requires a candidate 𝑣 ∈ 𝐶𝐼 (𝑢) must

have at least one neighbor 𝑣 ′ in𝐶𝐼 (𝑢 ′) for each𝑢 ′ ∈ 𝑁 (𝑢), but does
not consider the number of distinct neighbors with specific labels.

As a neighbor 𝑣 ′ ∈ 𝑁 (𝑣) can appear in candidate sets of different

neighbors 𝑢 ′ ∈ 𝑁 (𝑢), 𝑣 ′ can be valid for SYM, but is pruned by the

neighbor label frequency filter (NLF) in RF. We do not report the

number of candidates in the local index because it is generated for

each update. We evaluate the cost of index update in the following.
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Figure 10: Comparison of the average candidate set size for
each query vertex.

Query Time Breakdown. Given an update, RF first updates the

global index and then builds the local index to obtain the affected re-

gion. Figure 11 shows the query time breakdown for each update on

individual queries. As the local index time fluctuates, we represent

it as dots instead of a line. The figure also illustrates the indexing

time of SYM, the latest CSM algorithm, for reference. We present

the results on sparse queries on lj and ls as representatives. Based

on the experiment results, we have the following observations.

Global Index. The global index update time of RF is much shorter

than that of SYM because the filter rule of RF is simpler. The global

index update time is more steady than the local index generation

time on a variety of queries since each update only affects candi-

dates adjacent to the updated edge. Overall, the global index update

is very efficient, less than 0.01 ms for each update, as shown in the

figure.

Local Index. The local index generation time is very short in most

cases because the global index significantly reduces the number of

data vertices involved in the computation, and the region affected

by the update is small. However, some queries in Figure 11b have

much longer local index generation time than other queries because

the update has a big affected region. For example, we find a local

candidate set had more than 500,000 candidates for a query vertex.



Nevertheless, RF built the local index efficiently (less than 50 ms)

on those queries, and the enumeration time can dominate the cost

because there are many incremental matches (e.g., some queries

have more than 10
7
results per update) in the big affected region.

As shown in Figure 7, RF significantly outperforms SYM in terms

of the query time. Therefore, the benefit of the query reduction

offsets the overhead.
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Figure 11: Query time breakdown of each individual query.
The query ID is labeled in the ascending order of query time.
Query time (Total Query) for an update includes the global
index update time (Global Index), the local index construction
time (Local Index) and the enumeration time. SYM Index is
the index update time of SYM.

Response Time. Figure 12 presents the response time for each

update on individual queries. RF runs much faster than SYM on lj

and the response time is less than 0.01 ms. RF cannot dominate SYM

on each case in ls. Specifically, RF is slower than SYM on 10 of 100

queries in terms of the response time. Those 10 queries generally

have a big affected region that contains many incremental results

and the local index generation dominates the response time. In such

cases, it is easy for SYM to find one result from the large result

set, whereas the overhead of extracting the affected region in RF

offsets the benefit of finding one result. Despite of the overhead of

the local index, the response time of RF is generally less than 1 ms

on most queries on ls.
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Figure 12: Response time of each individual query. The query
ID is labeled in the ascending order of response time of SYM.

Summary.We have the following findings through the exper-

iments in this subsection. 1) The query reduction technique can

dramatically accelerate the query because the effective matching

order reduces the search space size. 2) Compared with existing CSM

approaches, our global index with a simple filter rule achieves a

considerable pruning power at a much lower overhead. 3) The two-

level indexing mechanism is effective for extracting the affected

region. 4) RF can perform worse than existing CSM approaches

if the workload has a large number of incremental matches for

the update, whereas we only want to get a small portion (e.g., one

result) of them.

6.3.2 Effectiveness of Dual Matching. We evaluate the effectiveness

of the dual matching technique by comparing the performance of

RF with and without the optimization. Table 5 lists the speedup

achieved by enabling the technique. The value excludes the over-

head of the global index update because it is fixed for RF with/with-

out the optimization. The optimization generally accelerates the

query, and the speedup is up to 10X on some queries. This result

shows the effectiveness of the technique. Because the auto-sets

are obtained in the offline stage, the technique does not incur any

overhead for the online processing. Thus, we recommend to always

enable dual matching for CSM.

Table 5: Effectiveness of the dual matching technique. Avg
is the average speedup achieved by enabling dual matching.
Max is the maximum speedup on the query set.

Dataset Tree Sparse Dense
Avg Max Avg Max Avg Max

az 1.27X 1.69X 1.28X 1.68X 1.82X 5.00X

lj 1.23X 1.40X 1.39X 1.62X 1.01X 1.03X

nf 1.74X 4.14X 2.15X 10.16X 1.40X 4.14X

ls 1.12X 1.52X 1.46X 4.59X 1.62X 4.48X

7 CONCLUSION
In this paper, we study the problem of continuous subgraph match-

ing (CSM) and propose an efficient CSM approach, RapidFlow. We

design the query reduction technique that reduces the problem of

finding incremental matches for an update to that of enumerating

all matches of a subgraph of 𝑄 in the region of 𝐺 affected by the

update, i.e., a batch subgraph matching (BSM) problem. In order

to reduce the redundant computation caused by automorphisms

of 𝑄 , we propose the dual matching technique, which reverses the

roles of query graphs and data graphs and enumerates incremen-

tal matches by permutating query vertices. Extensive experiment

results show that RapidFlow significantly outperforms state-of-the-

art CSM approaches including TurboFlux and SymBi. The results

also suggest that with the query reduction, existing BSM techniques

are efficient in the CSM setting. An interesting research direction is

to investigate how to implement and integrate the query-dependent

index into existing systems. A promising approach is to regard the

query-dependent index as a collection of materialized views. We

can maintain these views incrementally given the update and find

incremental matches based on the views instead of the base data.
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Figure 13: A running example of using the symmetry-
breaking technique in CSM.
A CORRECTNESS OF RAPIDFLOW
Correctness of Query Reduction. Given 𝑄 and 𝐺 , 𝐶𝐼 (𝑢) for
𝑢 ∈ 𝑉 (𝑄) is {𝑣 ∈ 𝑉 (𝐺) |𝐿(𝑣) = 𝐿(𝑢)∧𝑁𝐿𝐹 (𝑢, 𝑣) is true}. According
to the definition of subgraph isomorphism (Definition 2.1),𝐶𝐼 (𝑢) is
global complete. Thus, we focus on the completeness of the local

index.

Proposition A.1. The local index 𝐴 generated by Algorithm 4 is

local complete.

Proof. If 𝑣𝑎 ∉ 𝐶𝐼 (𝑢𝑎) or 𝑣𝑏 ∉ 𝐶𝐼 (𝑢𝑏 ), 𝐶𝐴 (𝑢) generated by

the algorithm is empty for each 𝑢 ∈ 𝑉 (𝑄𝑅). Because 𝐼 is global

complete, the set ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) of incremental matches mapping

𝑒 (𝑢𝑎, 𝑢𝑏 ) to 𝑒 (𝑣𝑎, 𝑣𝑏 ) is empty. Thus,𝐴 is local complete in this case.

Otherwise, 𝑀 (𝑢𝑎) = 𝑣𝑎 and 𝑀 (𝑢𝑏 ) = 𝑣𝑏 given 𝑀 ∈ ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) .
Given 𝑢 ′ ∈ 𝑁𝑄 (𝑢) where 𝑢 = 𝑢𝑎 (or 𝑢𝑏 ), 𝑀 (𝑢 ′) must belong to

𝐼𝑢
𝑢′ (𝑀 (𝑢)) according to Definition 2.1. Therefore, 𝐶𝐴 (𝑢) generated
at Lines 5-6 is local complete given 𝑢 ∈ Φ.

Next, we prove by contradiction that the pruning at Lines 8-10

does not break the completeness of 𝐶𝐴 (𝑢) where 𝑢 ∈ Φ. Assume

that 𝑣 has no neighbor in𝐶𝐴 (𝑢 ′) where 𝑣 ∈ 𝐶𝐴 (𝑢) and 𝑢 ′ ∈ 𝑁𝛿
+ (𝑢).

Also assume that the mapping (𝑢, 𝑣) appears in 𝑀 ∈ ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) .
As 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄), 𝑒 (𝑀 (𝑢), 𝑀 (𝑢 ′)) ∈ 𝐸 (𝐺). Then, 𝑀 (𝑢 ′) must

belong to 𝐶𝐴 (𝑢 ′) because 𝐶𝐴 (𝑢 ′) is local complete. This contra-

dicts the assumption. Thus, removing 𝑣 from 𝐶𝐴 (𝑢) does not break
its completeness. Similarly, we can prove that candidate sets for

𝑢 ∈ Φ after pruning at Lines 15-16 are local complete. Thus, the

proposition holds. □

Next, we prove that we can obtain the set of incremental matches

by finding the set of matches of 𝑄𝑅 in the local index 𝐴.

Proposition A.2. Given the setM𝑄𝑅
of matches of 𝑄𝑅 in the

local index 𝐴, the set ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) of incremental matches mapping

𝑒 (𝑢𝑎, 𝑢𝑏 ) to 𝑒 (𝑣𝑎, 𝑣𝑏 ) is equal to {{(𝑢𝑎, 𝑣𝑎), (𝑢𝑏 , 𝑣𝑏 )}∪𝑀 |𝑀 ∈ M𝑄𝑅
}.

Proof. LetM = {{(𝑢𝑎, 𝑣𝑎), (𝑢𝑏 , 𝑣𝑏 )} ∪ 𝑀 |𝑀 ∈ M𝑄𝑅
}. Given

𝑀 ∈ ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) , ∀𝑢 ∈ 𝑉 (𝑄𝑅), 𝑀 (𝑢) ∈ 𝐶𝐴 (𝑢) because 𝐶𝐴 (𝑢) is
local complete. As such,𝑀 ∈ M and ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) ⊆ M.

Given𝑀 ∈ M, we next prove that𝑀 belongs to ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) by
proving that𝑀 is a match of 𝑄 in 𝐺 . Suppose that 𝐸 = {𝑒 (𝑢,𝑢 ′) ∈
𝐸 (𝑄) |𝑢 ∈ 𝑉 (𝑄𝑅) ∧ 𝑢 ′ ∈ {𝑢𝑎, 𝑢𝑏 }}. Then, 𝐸 (𝑄) = 𝐸 (𝑄𝑅) ∪ 𝐸 ∪
{𝑒 (𝑢𝑎, 𝑢𝑏 )}. Given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄𝑅), 𝑒 (𝑀 (𝑢), 𝑀 (𝑢 ′)) ∈ 𝐸 (𝐺) ac-
cording to the construction method of M. Given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸,

𝑒 (𝑀 (𝑢), 𝑀 (𝑢 ′)) ∈ 𝐸 (𝐺) because 𝑀 (𝑢) ∈ 𝐶𝐴 (𝑢) and 𝐶𝐴 (𝑢) ⊆
𝑁 (𝑀 (𝑢 ′)) based on Lines 5-6 in Algorithm 4. Moreover, 𝑀 maps

query vertices to distinct data vertices, because 𝑣𝑎 and 𝑣𝑏 do not

appear in any candidate sets in 𝐴. Therefore,𝑀 ∈ ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) and
M ⊆ ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) . Together with ΔM𝑒 (𝑢𝑎,𝑢𝑏 ) ⊆ M, ΔM𝑒 (𝑢𝑎,𝑢𝑏 )
is equal toM. □

Correctness of Dual Matching. X generated by GenerateAu-

toSet in Algorithm 5 satisfies the following proposition.

Proposition A.3. Each set 𝑋 ∈ X is an auto-set and X is a set

of disjoint sets such that each 𝑒 ∈ 𝐸 (𝑄) belongs to 𝑋 ∈ X. Given
𝑒, 𝑒 ′ ∈ 𝐸 (𝑄), 𝑒 and 𝑒 ′ belong to the same auto-set if 𝑒 can be mapped

to 𝑒 ′ in𝑀𝑄 ∈ M𝑄 .

Proof. Given 𝑒 (𝑢,𝑢 ′) ∈ 𝐸 (𝑄), 𝑒 (𝑀𝑄 (𝑢), 𝑀𝑄 (𝑢 ′)) must belong

to 𝐸 (𝑄) given𝑀𝑄 ∈ M𝑄 . Thus, Line 9 ensures that𝑋 is an auto-set.

Lines 5 and 8 guarantee 𝑋 ∩ 𝑋 ′ = ∅ given different 𝑋,𝑋 ′ ∈ X. As
there must be a match mapping 𝑒 to itself, each edge not selected at

Line 5 will lead to an auto-set. Therefore, given 𝑒 ∈ 𝐸 (𝑄), 𝑒 belongs
to 𝑋 ∈ X. Moreover, Lines 7-10 ensure that 𝑒 and 𝑒 ′ belong to the

same auto-set if there exists𝑀𝑄 ∈ M𝑄 mapping 𝑒 to 𝑒 ′. Thus, the
proposition holds. □

Proposition A.4 is straightforward according to Proposition 5.1.

Recall that given 𝑋 ∈ X, RapidFlow (Algorithm 2) first finds the

set ΔM𝑒 of incremental matches for an arbitrary query edge 𝑒 ∈ 𝑋
and then generates ΔM𝑋 with the dual matching. Then, RapidFlow

obtains ΔM as

⋃
𝑋 ∈X ΔM for the update. Based on Propositions

A.3 and A.4,

⋃
𝑋 ∈X ΔM is equal to

⋃
𝑒∈𝐸 (𝑄) ΔM𝑒 where ΔM𝑒

is the set of incremental matches mapping 𝑒 to the updated edge.

Therefore, ΔM generated by RapidFlow is the set of incremental

matches for the update. Therefore, RapidFlow is correct. According

to Propositions A.3 and A.4, the dual matching technique eliminates

the redundant computation incurred by automorphisms of 𝑄 .

Proposition A.4. ΔM𝑋 generated by DualMatch in Algorithm

5 is the set of incremental matches that map query edges in 𝑋 to the

updated edge.

B DUAL MATCHING VERSUS
SYMMETRY-BREAKING

The symmetry-breaking technique cannot be directly applied to

continuous subgraph matching (CSM) because it can miss valid

results. The technique assigns partial orders < to query vertices

based on automorphisms of the query graph𝑄 . Given query vertices

𝑢 and 𝑢 ′, 𝑢 < 𝑢 ′. The symmetry-breaking technique requires each

result𝑀 to satisfy𝑀 (𝑢) < 𝑀 (𝑢 ′) (i.e., the vertices mapped to𝑢 and

𝑢 ′ satisfy the partial order as well) in the enumeration. However,

this rule can lead to fewer results for CSM since each result of CSM

is a bijective function rather than a subgraph.
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Figure 15: The cumulative distribution function of the
elapsed time of processing an update edge in RF on unsolved
queries. The elapsed time of processing an edge is measured
as the time of finding one incremental match of the update.

Table 6: The memory cost (GB) of the global index of RF.
Tree Sparse Dense

az lj nf ls az lj nf ls az lj nf ls
0.07 0.21 0.52 1.46 0.13 0.29 0.52 1.87 0.14 0.36 0.60 1.44
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Figure 14: The cumulative distribution function of the
elapsed time of processing an update edge in RF on unsolved
queries. The elapsed time of processing an edge is measured
as the time of finding all incremental matches of the update.

We use an example to illustrate this issue in Figure 13. Given the

insertion of 𝑒 (𝑣3, 𝑣4) in 𝐺 , there are four incremental matches as

shown in Figure 13c. The symmetry-breaking technique assigns

the partial order 𝑢1 < 𝑢3. Each match 𝑀 must satisfy 𝑀 (𝑢1) <
𝑀 (𝑢3). Consequently, two results are ruled out as shown in Figure

13d, which violates the problem definition of CSM. A potential fix

of the issue is to merge results in the two tables. However, the

technique needs to execute two sub-queries to find ΔM𝑒 (𝑢1,𝑢2) and
ΔM𝑒 (𝑢3,𝑢4) , respectively. In contrast, our dual matching technique

reports the correct output of the example with a single sub-query.

C SUPPLEMENTAL EXPERIMENTS
Time Cost of Processing an Update.We examine the time cost

distribution of processing each edge of RF on unsolved queries. As

shown in Table 4, RF has 16 and 12 unsolved queries on nf and ls, re-

spectively. Figure 14 presents the cumulative distribution function

of the elapsed time of processing an update on these queries. The

elapsed time is measured as that of finding all incremental matches

for each update. We can see that most edges can be processed in less

than 10 ms, whereas a few edges can take more than 1 second be-

cause there are a large number of incremental matches. We further

report the time cost distribution of finding an incremental match for

each update on those queries in Figure 15. As shown in the figure,

most edges can be processed in less than 1 ms. However, several

edges still take more than 1 second on nf. After investigation, we

find that RI, which is the BSM algorithm used to find matches in

our implementation, generates an ineffective matching order for

the query and consequently leads to a number of invalid partial

results in the enumeration. Nevertheless, the experiment results

show that the query reduction technique proposed in this paper is

efficient.

Memory Cost. Given a query on a dataset, we measure the

memory cost of the index as its resident set size (RSS). Specifically,

RSS is the physical memory usage by a process. We can obtain

its value by reading files in /proc/pid in Linux. The RSS of the

global index is computed by differing the value before and after the

creation of the global index. Table 6 reports the maximum value in

each query set. The indexes consume a small amount of memory

space, which is less than 2.0 GB, because many invalid data vertices

are ruled out.
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