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Subgraph Matching with Effective Matching
Order and Indexing

Shixuan Sun and Qiong Luo

Abstract—Subgraph matching finds all embeddings from a data graph that are identical to a query graph. Recent algorithms work by
generating a tree-structured index on the data graph based on the query graph, ordering the vertices root-to-leaf path-by-path in the
tree, and enumerating the embeddings following the matching order. However, we find such path-based ordering and tree-structured
index based enumeration inherently limit the performance due to the lack of consideration on the edges among the vertices across tree
paths. To address this problem, we propose an approach that generates the matching order based on a cost model considering both
the edges among query vertices and the number of candidates. Furthermore, we create a bigraph index for candidate vertices and
their selected neighbors in the data graph, and use this index to perform enumeration along the matching order. Our experiments on
both real-world and synthetic datasets show that our method outperforms the state of the art by orders of magnitude.

Index Terms—Graph, Graph Query, Subgraph Matching.

F

1 INTRODUCTION

G IVEN a graph q as the query, and another graph
G, usually much larger than q, as the data graph,

subgraph matching finds all embeddings in G that are
isomorphic to q. For example, given q and G in Figure 1,
{(u0, v0), (u1, v1), (u2, v3), (u3, v6)} is a match.
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Fig. 1: Example graphs.

The subgraph matching problem is NP-complete [6],
and a variety of algorithms [3], [5], [9], [11], [20], [23], [28]
have been proposed. These algorithms focus on generating
effective matching orders and designing powerful filtering
strategies to minimize the number of candidates in the data
graph. QuickSI [23] designs the infrequent-edge-first ordering
technique, which sorts the edges of the query graph in the
ascending order in terms of the frequency appeared in the
data graph. GraphQL [11] adopts the left-deep-join ordering
strategy, which models the enumeration procedure as the
join problem. SPath [28], TurboIso [9] and CFL [3] propose
the path-based ordering method, which generates a matching
order by decomposing the query graph into several paths
and ordering the paths based on the estimated number of
embeddings of each path. Except the ordering strategies,
the state-of-the-art algorithms, such as TurboIso [9] and
CFL [3], employ a tree-based framework, which constructs a
light-weight tree-structured index to minimize the number
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of candidates, and enumerates all matches based on the
index instead of the original data graph. Although these
techniques have led to significant advances, we find several
inherent problems in them.

First, existing ordering strategies only consider the num-
ber of candidates of every vertex (or path), but miss the
edges among query vertices.
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Fig. 2: The enumeration process with π = (u0, u1, u2, u3).

Example 1.1. Given q and G in Figure 1, existing order-
ing strategies, which include the infrequent-edge-first
ordering, the left-deep-join ordering and the path-based
ordering, obtain the matching order π = (u0, u1, u2, u3)
based on the number of candidates in the data graph:
u0.C = {v0}, u1.C = {v1−2}, u2.C = {v3−5} and
u3.C = {v6−12}. During enumeration, u1, u2 and u3

obtain their candidate data vertices based on u0. Figure
2 visualizes the recursive enumeration process, which
expands a partial result by mapping a data vertex to
a query vertex along the matching order. Each node
si (i = 0, ..., 9) denotes a partial result such as s2 :
{(u0, v0), (u1, v1)}, and an edge corresponds to a map-
ping between a query vertex and a data vertex such as
e(s1, s2) : (u1, v1). In this matching order, 35 out of a
total of 42 embeddings are not ruled out until the end of
enumeration. In contrast, if we swap the matching order
of u2 and u3 to match in the order of (u0, u1, u3, u2),
we can prune the invalid intermediate results at an early
stage, because there is an edge between u1 and u3 in q.
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Furthermore, if u2 and u3 obtain their candidates based
on u3 and u1 respectively instead of u0, the search space
can be reduced further. Figure 5d presents the enumer-
ation process with these two improvements, which is
much more efficient than that in Figure 2.

Second, in a tree-based framework, the matching order
is generated with tree-structured indices [3], [9], which only
maintain edges along paths. As a result, even if there is a
more efficient order, the index cannot support the enumer-
ation. In other words, the tree-based framework inherently
limits the generation of the matching order.
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Fig. 3: An example of the index.

Example 1.2. Given q in Figure 3a and G in Figure 1b, qt is
a BFS (Breadth-first search) tree rooted at u0 (depicted
by thick lines). The tree-structured index Gt in Figure 3b
has the same structure as qt, and stores the candidate
set for each query vertex as well as edges between
candidates in the original data graph. Gt cannot support
the enumeration along (u0, u1, u3, u2), because it does
not keep the edges between u1.C and u3.C.

Additionally, we find that existing work could benefit
from stronger filtering strategies to minimize the size of
candidate sets, because they can both further reduce the
search breadth of partial results and provide more accurate
statistics for the matching order generation.

Our Approach. Motivated by these observations, we
propose a new subgraph matching algorithm VC (Vertex
Connectivity). Different from the tree-based framework,
which first constructs the index and then generates a match-
ing order based on the index, VC performs subgraph match-
ing with a new process, which contains four steps: (1)
extract a candidate set for each query vertex; (2) generate
a matching order based on the statistics of the candidates;
(3) construct a bigraph index BI , which stores the edges
among data vertices in the candidate sets; and (4) enumerate
all results based on BI . The first three steps are the indexing
phase, and the last step enumeration.

During candidate extraction, VC first generates a can-
didate set u.C for each query vertex u along an order of
query vertices, called the indexing order. Then, VC refines
the candidate sets in the reverse order of the indexing order
with a pseudo star isomorphism constraint and a ping-pong
filtering strategy. Next, VC generates an order of query ver-
tices, called the matching order, with a vertex-based ordering
strategy, which considers both the sizes of candidate sets
and the vertex connectivity among query vertices. When
generating the matching order, VC also obtains a pivot dic-
tionary, which is a set of pairs of query vertices to determine
the edges in the data graph to be stored in the index. After
that, we further construct a bigraph (i.e., bipartite graph)
index BI : for every pair of vertices (u, u′) in the pivot
dictionary, we retrieve the candidate sets u.C and u′.C as

two sets of vertices and add edges between these two sets
as they appear in the data graph. Finally, we enumerate all
matches by expanding partial results recursively along the
matching order with the assistance of BI .

VC generates the matching order by considering both
the sizes of the candidate sets and the edges among query
vertices, which addresses the problem that existing order-
ing strategies only consider the number of candidates. By
redesigning the process of performing subgraph matching
and proposing the bigraph index, we break the constraint on
the generation of matching orders in the tree-based frame-
work, because the edges maintained in the bigraph index
of VC rely on the pivot dictionary, which is obtained when
generating the matching order, whereas the matching order
generated in the tree-based framework depends on the tree-
structured index. Moreover, the refinement of the candidate
sets based on the pseudo star isomorphism constraint and
the ping-pong filtering strategy can further minimize the
sizes of the candidate sets.

Contributions. In summary, we make the following con-
tributions in this paper.

• We propose a new subgraph matching algorithm VC,
which differs from existing algorithms on the process
of performing subgraph matching.

• We minimize the candidate sets of query vertices
with a pseudo star isomorphism constraint and a
ping-pong filtering strategy.

• We generate a matching order with the vertex-based
ordering strategy, which considers both the number
of candidates and the edges among query vertices.

• We design a bigraph index for enumeration, whose
space complexity is O(|E(G)| × |V (q)|) and time
complexity of construction is O(|E(G)| × |E(q)|).

Finally, we compare VC with a variety of existing al-
gorithms with different ordering strategies on both real
and synthetic datasets with new experiment metrics from
a latest performance study [13]. The results show that VC
significantly outperforms previous algorithms.

Paper Organization. Section 2 introduces the back-
ground. Section 3 gives an overview of our VC algorithm.
The construction of indices and the generation of matching
orders are presented in Sections 4 and 5 respectively. We
evaluate VC in Section 6 and conclude in Section 7.

2 BACKGROUND
2.1 Preliminaries
In this paper, we focus on the vertex-labeled undirected
graph g = (V,E,Σ, L), where V is a set of vertices, E is
a set of edges, Σ is a set of labels, and L is a function that
associates a vertex v with a label L(v) ∈ Σ. The query graph
q is connected. Next, we give a formal definition of subgraph
matching and related preliminaries used in this paper, and
summarize the frequently used notations in Table 1.
Definition 1. Subgraph Isomorphism (Match): Given a

query graph q = (V,E,Σ, L) and a data graph G =
(V
′
, E
′
,Σ
′
, L
′
), a subgraph isomorphism (match) is an

injective function f : V → V
′

that satisfies:
(1). ∀u ∈ V,L(u) = L

′
(f(u));

(2). ∀e(u, v) ∈ E,∃e(f(u), f(v)) ∈ E′ .
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We call a subgraph isomorphism a match for simplicity.

Definition 2. Subgraph Matching: Given q and G, find all
matches from q to G.

Definition 3. Vertex Induced Subgraph: Given a graph g =
(V,E,Σ, L) and V

′ ⊆ V , a vertex induced subgraph of
g constructed on V ′ is denoted as g[V ′] = (V ′, E′,Σ, L)
where E′ = {e(u, v)|e(u, v) ∈ E and u, v ∈ V ′}.

Definition 4. Star: Given a graph g and a vertex u ∈ V (g), a
star rooted at u, denoted as ST (u), is the tree of depth 1
rooted at u that contains all neighbor vertices of u in g.

Definition 5. Order of Vertices: Given a query graph q, an
order Γ is a permutation of the vertices in q. Γ[i] is the ith
vertex in Γ and Γ[i : j] is the set of vertices from index
i to j in Γ. We call an order of vertices for matching a
matching order, denoted as π, and one for indexing an
indexing order, denoted as π′.

Definition 6. Connected Order: Given a query graph q and
an order Γ, Γ is connected if given any 1 6 i 6 |Γ|, the
vertex induced subgraph q[Γ[1 : i]] is connected.

Definition 7. Backward Neighbors: Given a query graph q,
an order Γ and a vertex u = Γ[i], the backward neighbors
of u, denoted as BNΓ

q (u), are the neighbors of u that are
positioned before u in Γ.

Definition 8. Complete Candidate Set: Given q and G, a
candidate set u.C for u ∈ V (q) is complete if u.C
satisfies: If a mapping (u, v) exists in any matches from
q to G where v ∈ V (G), then v ∈ u.C. If ∀u ∈ V (q), u.C
is complete, then we say C is complete.

Definition 9. Pivot and Pivot Dictionary: Given a query
graph q and a connected matching order π, the pivot
of a query vertex u is a query vertex u′ in BNπ

q (u). The
pivot dictionary, denoted as P , records the pivot of each
query vertex, and P[u] denotes the pivot of u. π[1] has
no pivot, as it has no backward neighbor.

The notion of a core was first introduced by Seidman,
which measures the local density of a graph [22]. The
definition of k-core is as follows.

Definition 10. k-core: Given a graph g, a k-core of g is a
maximal connected subgraph g′ of g that satisfies ∀u ∈
V (g′), d(u) > k, where d(u) is the degree of u in g′.

Definition 11. Core Value: Given a graph g and a vertex
u ∈ V (g), the core value of u, denoted as u.core, is c if u
belongs to a c-core but not any (c+1)-core.

Batagelj [2] et al. proposed an O(|E(g)|) algorithm to
calculate the core values of all vertices in g, and proved that
there is exactly one 2-core in a connected graph. We use this
algorithm to calculate u.core. CFL [3] defined core structure
as follows.

Definition 12. Core Structure: Given a query graph q, the
core structure of q is the 2-core of q.

We further define the core degree in Definition 13. When
generating the indexing order and the matching order, we
prioritize the vertices by their core values and core degrees
to exclude the effect of the vertices not in the core structure.

TABLE 1: Notations.
Notations Descriptions
g, q and G graph, query graph and data graph
V (g) and E(g) vertex set and edge set of g
d(u), L(u) and N(u) degree, label and neighbors of u
e(u, v) edge between u and v
u.core, u.core degree core value and core degree of u
N(V ) neighbors of the vertices in V
g[V ] induced subgraph of g given V
ST (u) star rooted at u
π and π′ matching order and indexing order
C and P candidate set and pivot dictionary
u.C candidates of u in C
BNΓ

q (u) backward and forward neighbors of u
BI bigraph index
BIu

′
u bigraph between u.C and u′.C

BIu
′

u (v) neighbors of v in u.C where v ∈ u′.C

Definition 13. Core Degree: Given a query graph q, let VC
be the set of vertices in the core structure of q. The core
degree of u is |N(u) ∩ VC |, denoted as u.core degree. If
a vertex u /∈ VC , u.core degree is 0.

2.2 Related Work
To put our research in context, we categorize the related
work by the problem addressed: labeled subgraph matching
and unlabeled subgraph matching. Our paper focuses on the
labeled subgraph matching problem.

Labeled Subgraph Matching. Labeled subgraph match-
ing aims to find all matches in a single labeled data graph.
Based on execution phases of the search process, we catego-
rize the algorithms into direct-enumeration and indexing-
enumeration. The direct-enumeration approaches, such as
Ullmann [26], VF2 [5], QuickSI [23], GraphQL [11] and SPath
[28], do not construct an index given a query graph before
enumeration, but obtain the candidates of each query ver-
tex individually based on filters such as the neighborhood
signature [28]. Due to the lack of accurate information to
estimate cost, the matching order can be ineffective and
there may be many false positive candidates. Lee et al.
[18] provided an extensive discussion on these algorithms
and showed that these algorithms have problems in their
matching order selection, and the signature-based filters are
only effective for some datasets.

To address the problems in the direct-enumeration algo-
rithms, researchers proposed to divide the search process
into two phases, first of which constructs an index given
a query graph and second conducts enumeration based
on the index. The index not only reduces the number of
candidates but also provides accurate cost estimation to
generate an effective matching order. TurboIso [9] designed
a tree-structured index, candidate region, and generated
the matching order by the path-based ordering strategy.
Moreover, TurboIso [9] proposed the neighborhood equiv-
alent class to compress the similar vertices in the query
graph. CFL [3], the state-of-the-art algorithm, accelerated
the enumeration by postponing cartesian products with a
matching order that prioritizes the query vertices in the core
structure, and proposed a new tree-structured index CPI,
which reduces the space complexity from O(|V (G)||V (q)|)
of TurboIso to O(|E(G)| × |V (q)|). Both TurboIso and CFL
achieved impressive speedups over the direct-enumeration
algorithms.

Additionally, previous research improved labeled sub-
graph matching by exploiting the vertex relationship in data

Authorized licensed use limited to: National University of Singapore. Downloaded on November 01,2020 at 07:00:43 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2980257, IEEE
Transactions on Knowledge and Data Engineering

4

graphs [20], utilizing the computing results among multiple
queries [21] and parallelizing the algorithms on a single
machine [13], [15] or the distributed environment [25].

Unlabeled Subgraph Matching. Unlabeled subgraph
matching is to find all matches in unlabeled graphs. Due
to the lack of label, unlabeled subgraph matching is more
challenging than labeled subgraph matching. Moreover, un-
labeled subgraph matching is required to handle automor-
phism to eliminate any duplicates in the matching results
[7]. The latest research on this problem focuses on designing
parallel approaches such as Afrati [1], TwinTwig [16], SEED
[17], PSgL [24], Crystal [19] and DualSim [14].

2.3 Tree-based Frameworks
The latest subgraph matching algorithms CFL [3] and Tur-
boIso [9] employ a tree-based framework to conduct sub-
graph matching. In the following, we use CFL, the state-of-
the-art algorithm, as a representative to illustrate the general
idea of the tree-based framework.

Given q and G, CFL first obtains a BFS (breadth-first
search) tree qt from q by selecting a root vertex u and
performing a BFS traversal from u. Next, CFL constructs
a tree-structured index CPI on G based on qt. Specifically,
CPI generates a complete candidate set for each query
vertex level-by-level along the top-down order of qt. During
generation, CPI conducts backward pruning at each level.
After the generation, CPI performs a bottom-up refinement
level-by-level along qt to minimize the sizes of candidate
sets. Both the generation and the refinement are based on
the observation: Given v ∈ u.C, if (u, v) exists in a match
from q to G, then ∀u′ ∈ N(u), N(v)

⋂
u′.C 6= ∅. Addi-

tionally, in the generation and refinement processes, CPI
not only maintains the candidate vertices, but also stores
edges among candidate vertices. After constructing CPI,
CFL adopts the path-based ordering strategy to generate a
matching order. In particular, CFL sorts the paths of qt based
on the estimated number of embeddings of each path in CPI.
Finally, CFL enumerates all matches along the matching
order based on CPI.
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Fig. 4: A running example of CFL on the graphs in Figure 1.

Example 2.1. Given q and G in Figure 1, CFL obtains the
BFS tree qt rooted at u0 as shown in Figure 4a. Next,
CFL constructs the tree-structured index CPI in Figure
4b, which has the same structure as qt. CPI stores the
candidate set for each query vertex as well as edges be-
tween candidates in the original data graph. qt contains
three paths, which are p1 = (u0, u1), p2 = (u0, u2) and
p3 = (u0, u3). CFL sorts the three paths by the number of
embeddings in CPI, which is (p1, p2, p3). Therefore, CFL
obtains the matching order π = (u0, u1, u2, u3). Finally,
CFL enumerates all matches along π with the assistance
of CPI, which is the same as the enumeration procedure
in Figure 2.

Compared with the tree-based framework, VC has four
differences: (1) VC redesigns the process of performing sub-
graph matching; (2) VC simplifies the candidate extraction
to the forward and backward stages and refines the candi-
date sets with stronger pruning strategies; (3) VC adopts the
vertex-based ordering method instead of the path-based or-
dering; and (4) VC models the indices as multiple bigraphs
among candidate sets.

3 ALGORITHM OVERVIEW
Given q and G, VC recursively expands partial results by
mapping query vertices to their candidates along the match-
ing order. Therefore, VC requires a complete candidate set
C and a matching order π. Furthermore, we construct two
auxiliary structures, a pivot dictionary P and a bigraph
index BI , to speed up the enumeration.

When expanding a partial result by mapping a query
vertex u to a data vertex v, we only need to consider the data
vertices that are the neighbors of the data vertices mapped
to the backward neighbors of u and belong to the candidate
set u.C according to Definitions 1 and 8. Therefore, we select
a backward neighbor u′ of u to maintain the relationship
between u′.C and u.C to facilitate the enumeration. The
selected backward neighbor u′ of u is the pivot of u, and the
pivot dictionary P records the pivot of each query vertex
except π[1], because π[1] has no backward neighbor. We
construct the bigraph indexBI containing bigraphs for each
pair of vertices in P . A bigraph in BI has two vertex sets
u.C and u′.C where (u, u′) is a pair of vertices in P and
u′ is the pivot of u. The bigraph between u.C and u′.C is
denoted as BIu

′

u .
Algorithm 1 presents our VC algorithm, which takes q

and G as input, and outputs all matches from q to G. We
first extract the candidates in G for each query vertex (Line
2). Next, we generate the matching order π and the pivot
dictionary P (Line 3). Line 4 constructs the bigraph index
BI . We call the three steps the indexing phase.

Following the indexing phase, the enumeration phase
expands the partial results vertex-by-vertex recursively
along π based on BI . If all query vertices have been
mapped, we output the result and return (Line 11). Oth-
erwise, we obtain the next query vertex u in π and the pivot
of u (Line 12). We expand the partial result M by mapping
a candidate to u (Lines 13-15). We get the candidates of u
based on BIu

′

u and the data vertex mapped to the pivot
of u (i.e., BIu

′

u (M [u′])). For a candidate v of u, line 14
checks whether v is matched, and has edges to the data
vertices mapped to the backward neighbors of u. If so, we
invoke Enumerate recursively the same as in lines 7-9. The
Validate function does not check the edge between v and
the data vertex mapped to the pivot p of u, because v is
from BIpu(M [p]), so the edge exists. During enumeration,
the original data graph is only used to check the existence
of edges between data vertices (Line 18).
Example 3.1. Figure 5 shows the VC algorithm running

on the graphs in Figure 1. The results of candidate
extraction are illustrated in Figure 5a. Each candidate
set u.C stores the data vertices that can be mapped
to u. Figure 5b shows the matching order and pivot
dictionary generated by VC. Take u3 as an example:
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Fig. 5: A running example of VC on the graphs in Figure 1.

Algorithm 1: VC algorithm
Input: a query graph q and a data graph G
Output: all matches from q to G

1 begin
/* The indexing phase. */

2 C ← ExtractCandidates(q,G);
3 (π,P)← GenerateMatchingOrder(q,G,C);
4 BI ← ConstructIndex(C,P);

/* The enumeration phase. */
5 l← 1, u← π[l], M ← {};
6 foreach v ∈ u.C do
7 M [u]← v, v.visited← true;
8 Enumerate(G, π,P,M,BI, l + 1);
9 v.visited← false, remove (u, v) from M ;

10 Procedure Enumerate(G, π,P,M,BI, l)
11 if l = |π|+ 1 then Output M, return;
12 u← π[l], u′ ← P[u];
13 foreach v ∈ BIu′u (M [u′]) do
14 if v.visited is false and Validate(G,M, u, v, u′) is

true then
15 Same as Lines 7-9;

16 Function Validate(G,M, u, v, p)
17 foreach u′ ∈ BNπ

q (u) with u′ 6= p do
18 if e(M [u′], v) /∈ E(G) then return false;

19 return true;

BNπ
q (u3) = {u0, u1}, and u1 is selected as its pivot.

The start vertex u0 in the matching order has no pivot.
For each pair of vertices (u, u′) in P , we construct a
bigraph to maintain the relationship between u.C and
u′.C , which is shown in Figure 5c. Specifically, BIu

′

u

maintains the edges between data vertices in u.C and
u′.C in the original data graph. Take v0 in u0.C and v1

in u1.C as an example: e(v0, v1) exists in E(G), then
there is an edge between v0 and v1 in BIu0

u1
. Moreover,

in BIu0
u1

, BIu0
u1

(v0) = {v1, v2}. Finally, the enumeration
process along π based on BI is illustrated in Figure 5d.

4 BIGRAPH INDEX
In this section, we propose a bigraph index BI , which is
constructed in two steps, candidate extraction and index
construction.

4.1 Candidate Extraction

Given q and G, candidate extraction is to obtain a complete
candidate set for each query vertex. To generate a complete
candidate set as small as possible, we define the exact star
isomorphism constraint and identify a property between a
pair of query and data vertices under a match.

Definition 14. Exact Star Isomorphism Constraint (ESIC):
Given q and G, C is the complete candidate set con-
structed by LDF. Given u ∈ V (q) and v ∈ V (G),
(u, v) satisfies the exact star isomorphism constraint if
there exists a match f from ST (u) to ST (v) such that
∀u′ ∈ N(u), f(u′) ∈ u′.C.

Lemma 4.1. Given q, G, u ∈ V (q) and v ∈ V (G), if a
mapping (u, v) exists in a match from q to G, then (u, v)
satisfies the exact star isomorphism constraint.

Based on Lemma 4.1, given u ∈ V (q) and v ∈ u.C, v can
be removed from u.C without breaking its completeness if
(u, v) does not satisfy ESIC. We use a technique proposed
in an approximate subgraph isomorphism algorithm [10] to
check whether (u, v) satisfies ESIC: (1) construct a bigraph,
denoted as Buv , with N(u) and N(v) as bipartitions where
an edge is added between u′ ∈ N(u) and v′ ∈ N(v) if
v′ ∈ u′.C . We call this method the neighborhood bigraph
construction; and (2) perform maximum bigraph matching
[27] to check the existence of a semi-perfect matching in Buv
(i.e., every vertex in N(u) is matched).

A
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D D
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2u 3u 4u

5u
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6v
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b Data Graph G.
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2v
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1u

2u

3u

1v

2v

3v

4u
4v

5v

d Partitioned Bu0
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Fig. 6: ESIC and PSIC examples.

Example 4.1. Given q in Figure 6a and G in Figure 6b,
the complete candidate set C constructed by LDF is as
follows: u0.C = {v0}, u1.C = {v1−2}, u2.C = u3.C =
{v3}, u4.C = {v3−5} and u5.C = u6.C = {v6−7}.
ST (u0) and ST (v0) are in the dotted line rectangles
respectively. As shown in Figure 6c, Bu0

v0 is the bigraph
constructed using the neighborhood bigraph construc-
tion method. As Bu0

v0 has no semi-perfect matching,
(u0, v0) violates ESIC. Then, v0 can be safely removed
from u0.C.

The time complexity of constructing Buv is O(d(u) ×
d(v)). The time complexity of maximum bigraph match-
ing is denoted as Φ(d(u), d(v)) (e.g., O(n2.5) for Hop-
corft and Karp’s algorithm [12] where n is the num-
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ber of vertices in Buv ). Then, the time complexity
of checking every query vertex and its candidates is
O(

∑
u∈V (q)

∑
v∈V (G)(d(u) × d(v) + Φ(d(u), d(v)))) =

O(|E(q)| × |E(G)| +
∑
u∈V (q)

∑
v∈V (G) Φ(d(u), d(v))). As

this checking is expensive, we raise a question:

• Can we remove the maximum bigraph matching check,
while still keeping a competitive filtering power as ESIC?

To answer this question, we first define neighborhood label
equivalent class as follows.
Definition 15. Neighborhood Label Equivalent Class: Given

a graph g and a vertex u ∈ V (g), the neighborhood
label set of u contains all distinct labels of its neigh-
bor vertices, denoted as NLS(u). Given l ∈ NLS(u),
the neighborhood label equivalent class NLEC(u, l) is
{u′|u′ ∈ N(u) and L(u′) = l}.

Example 4.2. Given u0 in Figure 6a, NLS(u0) =
{B,C}, NLEC(u0, B) = {u1} and NLEC(u0, C) =
{u2, u3, u4}.

Next, in order to eliminate the maximum bigraph match-
ing check, we define the pseudo star isomorphism constraint
and prove Theorem 4.1.
Definition 16. Pseudo Star Isomorphism Constraint (PSIC):

Given q and G, C is the complete candidate set con-
structed by LDF. Given u ∈ V (q) and v ∈ V (G),
(u, v) satisfies the pseudo star isomorphism constraint
if ∀l ∈ NLS(u), X = Θ[1 : i] where Θ is a permutation
of vertices in NLEC(u, l) and 1 6 i 6 |Θ|, the following
two conditions hold: (1) ∀u′ ∈ X,u′.C ∩N(v) 6= ∅; and
(2) |X| 6 | ∪u′∈X (N(v) ∩ u′.C)|.

Theorem 4.1. Given q, G, u ∈ V (q) and v ∈ V (G), if a
mapping (u, v) exists in a match from q to G, then (u, v)
satisfies the pseudo star isomorphism constraint.

Proof: Given q and G, C constructed by LDF is
complete. Suppose that (u, v) exists in a match from q
to G where u ∈ V (q) and v ∈ V (G). Then, (u, v)
satisfies ESIC (Lemma 4.1). Thus, there exists a semi-
perfect matching in Buv constructed by the neighborhood
bigraph construction method. According to Hall’s theorem
[8], ∀Y ⊆ N(u), |Y | 6 |N(Y )| in Buv . Given u′ and u′′ in
N(u) where L(u′) 6= L(u′′), the construction method of Buv
guarantees that u′ and u′′ have no common neighbors in
Buv , because u′.C ∩ u′′.C = ∅. So, ∀Y ⊆ NLEC(u, l) where
l ∈ NLS(u), |Y | 6 |N(Y )| in Buv . As Buv has a semi-perfect
matching, ∀u′ ∈ Y, u′.C ∩N(v) 6= ∅. Because N(Y ) in Buv is
identical to ∪u′∈Y (N(v)∩u′.C) based on the neighborhood
bigraph construction method, |Y | 6 | ∪u′∈Y (N(v)∩ u′.C)|.
Therefore, given X = Θ[1 : i] where Θ is any per-
mutation of vertices in NLEC(u, l) and 1 6 i 6 |Θ|,
∀u′ ∈ X,u′.C ∩N(v) 6= ∅ and |X| 6 |∪u′∈X (N(v)∩u′.C)|.
Thus, the theorem holds.

Based on this theorem, given u ∈ V (q) and v ∈ u.C,
we can safely rule out v from u.C if (u, v) does not satisfy
PSIC. PSIC checks each NLEC(u, l) respectively instead of
N(u), because it can improve the filtering power. We use the
following example to illustrate it.
Example 4.3. In Figure 6c, if we check PSIC in terms

of N(u0) with Θ(N(u0)) = (u1, u2, u3, u4), then

Algorithm 2: ExtractCandidates
Input: a query graph q and a data graph G
Output: the candidate set C

1 begin
2 π′ ← GenerateIndexingOrder(q);

/* The forward stage. */
3 u← π′[1], set u′.C to empty for all u′ ∈ V (q);
4 foreach v ∈ V (G) do
5 if LDF (u, v) is true and NLF (u, v) is true then
6 u.C ← u.C ∪ {v};

7 for i← 2 to |π′| do
8 u← π′[i];
9 foreach v ∈ ∩

u′∈BNπ′q (u)
N(u′.C) do

10 if LDF (u, v) is true and NLF (u, v) is true then
11 u.C ← u.C ∪ {v};

/* The backward stage. */
12 for i← |π′| to 1 do
13 u← π′[i];
14 foreach v ∈ u.C do
15 foreach l ∈ NLS(u) do
16 X ← ∅, j ← 0;
17 foreach u′ ∈ NLEC(u, l) do
18 j ← j + 1, Y ← N(v) ∩ u′.C, X ← X ∪ Y ;
19 if Y is ∅ or |X| < j then
20 u.C ← u.C\{v}, Goto Line 14;

21 foreach u′ ∈ N(u) do
22 foreach v ∈ u′.C do
23 if N(v) ∩ u.C is ∅ then u′.C ← u′.C\{v};

24 return C;

(u0, v0) satisfies PSIC. In contrast, if we check PSIC
in terms of NLEC(u0, B) and NLEC(u0, C) respec-
tively as shown in Figure 6d and Θ(NLEC(u0, C)) =
(u2, u3, u4), then (u0, v0) does not satisfy PSIC,
because |{u2, u3}| < |N({u2, u3})|. However, if
Θ(NLEC(u0, C)) = (u4, u3, u2), then (u0, v0) satisfies
PSIC.

The permutation of vertices in NLEC(u, l) may affect
the filtering effectivenesses of PSIC. However, our experi-
ment results show that a random order of the vertices is
sufficient for PSIC to achieve a competitive filtering power
as ESIC. Furthermore, ordering vertices in an NLEC intro-
duces additional cost. Therefore, in this paper we adopt a
random order of vertices in NLEC(u, l). Next, we present
our candidate extraction algorithm, developed based on
Theorem 4.1.

Extract Candidates. Algorithm 2 outlines the process of
candidate extraction. We first generate a connected order of
query vertices (Line 2). To differentiate from the matching
order, we name the order in which we extract candidates as
the indexing order, denoted as π′. Instead of the naive con-
struction method based on LDF, we implement the forward
stage based on an observation in CFL: given a query vertex
u, u.C can be obtained as the intersection of N(u′.C) for all
u′ ∈ N(u) where vertices in the intersection have the same
label as u [3]. Lines 4-6 get the candidate set of the start
vertex in π′, which contains the data vertices that match the
LDF and neighborhood label frequency (NLF) filters. The NLF
filter checks whether the label frequency of the neighbors
of the data vertex is greater than or equal to that of the
query vertex [3], [9]. Next, we start the forward stage along
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Fig. 7: A running example of candidate extraction.

π′ (Lines 7-11). After the forward stage, the backward stage
filters candidate sets in the reverse order of π′ based on
Theorem 4.1 (Lines 12-23). The ping-pong filtering strategy
immediately refines the candidate sets of every u′ ∈ N(u)
after updating u.C (Lines 21-23). The following proposition
holds based on Theorem 4.1.

Proposition 4.1. Given q and G, the candidate set C ob-
tained by Algorithm 2 is complete.

Example 4.4. Figure 7 illustrates Algorithm 2 running on q
in Figure 7a and G in Figure 7b. π′ is (u0, u3, u1, u2).
We first get u0.C = {v0, v1, v4, v6, v8}. Next, we start
the forward stage along π′, and generate u3.C =
{v0, v1, v4, v6, v8} based on u0.C . As BNπ′

q (u1) =
{u0, u3}, we obtain u1.C = {v3, v7} from the inter-
section of N(u0.C) and N(u3.C). Similarly, we obtain
u2.C = {v2, v5, v9}. The result of the forward stage is
shown in Figure 7c.
We start the backward stage following the reverse order
of π′. v2 is removed from u2.C , as it has only one distinct
neighbor in both u0.C and u3.C. Through the ping-pong
filtering strategy, v0 is removed from u0.C and u3.C
respectively, since v0 has no neighbors in u2.C. Similarly,
v3 is removed from u1.C. Based on the updated u1.C, v4

and v6 are removed from u0.C and u3.C . Next, u3.C
has no change, and v5 is removed from u2.C based on
the ping-pong filtering strategy. u0.C has no change. The
final result is shown in Figure 7d.

Generate Indexing Order. We first prove the following
theorem.

Theorem 4.2. Given any connected order, a query vertex not
in the core structure has at most one backward neighbor.

Proof: Given q, all query vertices that are not in the
core structure form a forest in which each vertex has one
parent. Therefore, given any connected order, the vertices
that are not in the core structure have at most one backward
neighbor.

Because we generate u.C based on the backward neigh-
bors of u in the forward stage, we prioritize the vertex by
the number of backward neighbors to filter the false positive
candidates at an early stage. Therefore, when generating
the indexing order, we put the query vertices in the core
structure before those not, according to Theorem 4.2. In
particular, we select the vertex with the maximum core
value as the start vertex in the indexing order instead of
that with the maximum degree in order to (1) exclude the
effect of the query vertices not in the core structure; and (2)
start the candidate extraction from the dense part of the core
structure. Algorithm 3 presents the details of generating the
indexing order.

Algorithm 3: GenerateIndexingOrder
Input: a query graph q
Output: an indexing order π′

1 begin
2 π′ ← (), set BNπ′

q (u) to empty for all u ∈ V (q);
3 u∗ ← argmaxu∈V (q) u.core;
4 Add u∗ to π′;
5 foreach u ∈ N(u∗)− π′ do
6 BNπ′

q (u)← BNπ′
q (u) ∪ {u∗};

7 while |π′| < |V (q)| do
8 u∗ ← argmaxu∈V (q)−π′ |BNπ′

q (u)|;
9 Same as Lines 4-6;

10 return π′;

Tie Handling. When there are ties in the max function
(Lines 3 and 8), we pick the vertex in the order of: (1)
u.core; (2) u.core degree; and (3) d(u) to lead the candidate
extraction to the dense part of q. If there are still ties, we
select the vertex with a lower id.

Example 4.5. Given q in Figure 7a, u.core = 2 for every u ∈
V (q). Based on tie handling, u0 is selected as the start
vertex, whose core degree is 3 and id is lower than u3. At
the end of Algorithm 3, we obtain π′ = (u0, u3, u1, u2).

Because the core structure of q, which is a connected
graph, is connected, Algorithm 3 has the following property.

Proposition 4.2. The indexing order π′ generated by Algo-
rithm 3 is connected, and the query vertices in the core
structure are positioned before the other vertices in π′.

4.2 Index Construction

After generating a matching order and a pivot dictionary
(Section 5.2), we construct an index on these candidate sets
to serve the subsequent enumeration. In enumeration, we
need to get the candidates of a query vertex u from its pivot
u′ (Line 13 in Algorithm 1). To facilitate this step, we main-
tain edges between u.C and u′.C for every pair (u, u′) ∈ P
as a bigraph, denoted as BIu

′

u , with u.C and u′.C as the
two bipartitions. Because we get the candidates of u from
u′, BIu

′

u records the neighbors in u.C of candidates in u′.C .
The details of index construction are shown in Algorithm 4.
Algorithm 4 has the following property.

Proposition 4.3. Every bigraph BIu
′

u in BI constructed by
Algorithm 4 satisfies that ∀v ∈ u.C ∩ N(v′) where v′ ∈
u′.C , v ∈ BIu′u (v′).

4.3 Analysis of BI

We first prove the correctness of VC (Algorithm 1). For
brevity, we only present the proof sketch.
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Algorithm 4: ConstructIndex
Input: a candidate set C and a pivot dictionary P
Output: the bigraph index BI

1 begin
2 foreach (u, u′) ∈ P do
3 Set BIu

′
u (v) to empty for all v ∈ u′.C;

4 Set v.count to 1 for all v ∈ u.C;
5 foreach v ∈ u′.C do
6 foreach v′ ∈ N(v) do
7 if v′.count = 1 then
8 BIu

′
u (v)← BIu

′
u (v) ∪ {v′}

9 Reset v.count to 0 for all v ∈ u.C;

10 return BI ;

Correctness of VC. Given q and G, VC can find all
matches from q to G based on BI .

Proof: (1) GivenM reported by Algorithm 1,BI guar-
antees M satisfies that ∀u ∈ V (q), L(u) = L(M [u]), and
line 14 in Algorithm 1 ensures M satisfies that ∀e(u, u′) ∈
E(q),∃e(M [u],M [u′]) ∈ E(G) and M does not contain any
duplicate data vertices. Therefore, M reported by VC is a
match from q to G. (2) According to Proposition 4.1 and
4.3, the enumeration on BI is equivalent to G. Therefore,
the search space of VC contains all matches from q to G.
(3) There are no duplicate candidates and edges in BI . M
does not contain any duplicate data vertices. So, VC will not
output any duplicate matches. Thus, the correctness of VC
is proved.

Space Complexity. BI contains two components: the
candidate sets and the bigraphs. As there are no duplicate
candidates in C and no duplicate edges in BI , the size of
the candidate set C isO(|V (G)|×|V (q)|) and the worst-case
size of the bigraphs is O(|E(G)| × (|V (q)| − 1)) (there are
|V (q)|−1 bigraphs in BI). As such, the space complexity of
BI is O(|E(G)| × |V (q)|).

Time Complexity. The function GenerateIndexingOrder
takes time polynomial to the size of query graph, which can
be omitted since the query graph is very small compared
with the data graph. We implement the forward stage in Al-
gorithm 2 by a counter-based technique proposed in CFL[3],
whose time complexity is O(|E(G)|×|E(q)|). Lines 14-20 in
Algorithm 2 take at most O(

∑
v∈u.C d(v)× d(u)) time. Sim-

ilarly, lines 21-23 also take at most O(
∑
v∈u.C d(v) × d(u))

time. Therefore, the backward stage (Lines 12-23) spends
O(

∑
u∈V (q)

∑
v∈u.C d(v)×d(u)) = O(|E(G)|×|E(q)|) time.

Thus, the time complexity of Algorithm 2 is O(|E(G)| ×
|E(q)|). Lines 5-8 in Algorithm 4 take O(|E(G)|) time. So,
the time complexity of Algorithm 4 is O(|E(G)| × |V (q)|).
Then, the time complexity of constructing BI is O(|E(G)|×
|E(q)|).

Pruning Power Comparison. By the definition of PSIC,
we can derive the following lemma.
Lemma 4.2. Given q and G, C is complete. If (u, v) satisfies

PSIC where u ∈ V (q) and v ∈ u.C, then (u, v) satisfies
that ∀u′ ∈ N(u), N(v)

⋂
u′.C 6= ∅.

However, given v ∈ u.C, (u, v) may violate PSIC even if
it satisfies that ∀u′ ∈ N(u), N(v)

⋂
u′.C 6= ∅.

Example 4.6. Take v2 ∈ u2.C in Figure 7c as an example: v2

satisfies that N(v2) ∩ u0.C 6= ∅ and N(v2) ∩ u3.C 6= ∅,
whereas it violates PSIC becauseN(v2)∩u0.C = N(v2)∩
u3.C = {v0}.

Therefore, the pruning power of PSIC in BI is stronger
than the observation used in CPI of CFL. With the ping-pong
filtering strategy, BI can further reduce the sizes of candidate
sets. However, as BI and CPI extract candidates with the
orders generated by different heuristic rules, we cannot
theoretically prove that the number of candidates obtained
by BI is smaller than that of CPI. Instead, we experimentally
compare the pruning power of BI with that of CPI, and
the experimental results show that BI has stronger pruning
power than CPI (see Section 6.4.1).

5 MATCHING ORDER GENERATION
In this section, we present the method that generates a
matching order as well as a pivot dictionary.

5.1 State Space Tree based Cost Model

We first define the partial subgraph isomorphism.

Definition 17. Partial Subgraph Isomorphism: Given q, G
and π, q′ is a vertex induced subgraph of q constructed
on π[1 : i] where 1 6 i 6 |V (q)|. A partial subgraph
isomorphism (psi), denoted as f ′, is a subgraph isomor-
phism from q′ to G. Specifically, when i = 0, we name
the psi as the initial psi, denoted as fr and fr = {}.

State Space Tree Exploration. The enumeration phase
of Algorithm 1 is based on the recursive backtracking tech-
nique, which conceptually constructs a state space tree H
on the fly. It starts from the initial psi and always extends
the most recently generated psi by mapping a query vertex
to a data vertex along the matching order for the following
step. In other words, it explores H by the depth-first search
order. The initial state of H is fr and the internal states are
the partial subgraph isomorphisms generated during enu-
meration. The edges of H correspond to mappings between
a query vertex in the matching order to a candidate in BI .
To differentiate the edges in H from that in graphs, we call
an edge in H an action. The leaves of H are terminations of
search paths originated from fr , which can be categorized
into two classes: the success leaves with the if-condition at
line 11 of Algorithm 1 as true and the failure leaves with
the if-condition at line 14 as false. All success leaves are the
solutions of subgraph matching. Except the failure leaves,
there is a one-to-one relationship from a state in H to a psi.
So, we call a non-failure state in H a psi state and denote it
as S.

Example 5.1. The search tree in Figure 5d can be viewed
as the state space tree H generated by VC on graphs
in Figure 1. Take node s2 as an example. It corresponds
to the psi {(u0, v0), (u1, v1)}, and the actions under s2

map u3 to each candidate in BIu1
u3

(v1) = {v6, v7, v8}. VC
explores H by the DFS order, and finds 7 matches finally.

Cost Model. Given q and G, VC explores H to find
all matches. So, the cost of VC, denoted as Tiso, can be
estimated by the total number of actions in H , assuming
the cost of each action is similar. The maximum depth of H ,
denoted as n, is equal to |π|. We regard the depth of fr , the
initial psi, as 0. Ti denotes the number of actions under the
psi states at depth i. Then, Tiso can be computed as follows.
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Tiso =
n−1∑
i=0

Ti. (1)

Ni denotes the number of the psi states at depth i, bij
is the search breadth of the jth psi state at depth i and the
average search breadth of the psi states at depth i is bi. Then,
T0 = N1 since the psi states at depth 1 are generated by
lines 6-7 of Algorithm 1, where no candidates are pruned,
and Ti =

∑j=Ni
j=1 bij = Ni × bi where 1 6 i 6 n − 1. Given

an action at depth i where 1 6 i 6 n − 1, if it can pass the
if-condition at line 14 of Algorithm 1, then a new psi state at
depth i+1 is generated. We call such an action a valid action.
Ni+1 is equal to the number of the valid actions at depth i.
We define valid factor αi as the fraction of valid actions over
the total number of actions at depth i. So, Ni+1 = Ti × αi
and Ti can be computed as follows.

Ti =


N1 if i = 0.
N1b

1 if i = 1.

N1b
i
∏i−1
j=1 αjb

j if 2 6 i 6 n− 1.
(2)

Based on Equation 1 and 2, the total cost of enumeration
can be computed as follows.

Tiso = N1(1 + b1 +
n−1∑
i=2

bi
i−1∏
j=1

αjb
j). (3)

5.2 The Vertex-based Ordering

Estimation of Tiso. To minimize Tiso, we first give an esti-
mation of the parameters in Tiso by examining the factors in
enumeration, which affect the parameters.

Given q, G, π, P and BI , let Sij be the jth psi state at
depth i. u is the (i + 1)th vertex in π, whose pivot is u′.
In Sij , u

′ has been mapped to v′. In Algorithm 1, procedure
Enumerate tries to extend Sij by mapping u to v ∈ BIu′u (v′).
The search breadth bij of Sij is equal to |BIu′u (v′)|. So, bi

can be estimated as |E(BIu
′

u )|
|u′.C| , denoted as b̃i. In Algorithm

1, function Validate plays the key role in terminating the
invalid search paths by checking the existence of edges
between a candidate v and the mapped data vertices of
BNπ

q (u). v has a higher probability to be pruned if u has
more backward neighbors. So, αi is estimated as 1

|BNπq (u)|2 ,
denoted as α̃i. N1 is equal to the number of candidates
of π[1]. By replacing the parameters in Equation 3 with
our estimations, we obtain the estimation T̃iso of the total
cost, and optimize T̃iso instead of Tiso. α̃i is determined
by the actual matching order π. We call the corresponding
α̃i of every vertex in π an assignment. As the number
of assignments is equal to the number of permutations of
query vertices (|V (q)|!), it is too expensive to compute the
optimal value on the fly. So, we propose a greedy approach
to minimize T̃iso.

Greedy Approach. The general idea is to select the query
vertex with a minimum b̃i × α̃i value as the next vertex in
π to prune the invalid search paths at an early stage and
minimize the number of psi states at the next depth. As the
matching order is generated vertex by vertex, we call this

Algorithm 5: GenerateMatchingOrder
Input: a query graph q, a data graph G and the candidate set C
Output: a matching order π, a pivot dictionary P and the

backward neighbors BNπ
q

1 begin
2 qw ← GenerateWeightedGraph(q,G,C);
3 VC ← {u ∈ V (q)|u.core > 2}, VNC ← V (q)− VC ;
4 P ← {}, w∗[u]← |V (G)| for all u ∈ V (q);
5 Set BNπ

q (u) to empty for all u ∈ V (q), set UN to empty;
6 u∗ ← argminu∈VC

|u.C|
u.core

, π ← (u∗);
7 foreach u ∈ N(u∗)− π do
8 BNπ

q (u)← BNπ
q (u) ∪ {u∗};

9 if w(u∗, u) 6 w∗[u] then
10 w∗[u]← w(u∗, u), P[u]← u∗;

11 Add u to UN if u /∈ UN ;

12 while |π| < |VC | do
13 u∗ ← argminu∈UN∩VC

w∗[u]

|BNπq (u)|2 ;

14 Add u∗ to π, remove u∗ from UN ;
15 Same as Lines 7-11;

16 while |π| < |V (q)| do
17 u∗ ← argminu∈UN∩VNC

w∗[u]

d2(u)
;

18 Add u∗ to π, remove u∗ from UN ;
19 Same as Lines 7-11;

20 return (π,P, BNπ
q );

strategy the vertex-based ordering. Algorithm 5 outlines the
matching order generation.

Line 2 first generates a directed weighted graph qw from
q as follows: for each edge e(u, u′) ∈ E(q), we generate two
edges e(u, u′) and e(u′, u) in qw with w(u, u′) = m

|u.C| and
w(u′, u) = m

|u′.C| where m is the number of edges between
the data vertices in u.C and u′.C in the data graph. Hence,
w(u, u′) is the value of b̃i if we select u as the pivot of u′.

VC contains the vertices in the core structure, whereas
VNC stores the other vertices (Line 3). We initialize the
pivot dictionary P as empty and use w∗[u] to store
minu′∈BNπq (u) w(u′, u) (Line 4). Based on Theorem 4.2, we
prioritize the query vertices in the core structure when
generating the matching order. Moreover, we prefer starting
enumeration from the dense part of the core structure, and
the start vertex has a small number of candidates. Therefore,
we pick a vertex with the smallest |u.C|

u.core value from the
core structure as the start vertex (Line 6). If VC is empty,
we replace it with VNC . Whenever modifying the value of
w∗[u], we update the pivot of u to keep that w(P[u], u)
(i.e., the estimated search breadth b̃i) has the smallest value
among w(u′, u) where u′ ∈ BNπ

q (u) (Line 10).
We process the vertices in VC and pick the vertex with

the minimum b̃i×α̃i value (Lines 12-15). Lines 16-19 process
the vertices that are not in the core structure. For every u ∈
UN ∩VNC , |BNπ

q (u)| = 1, u.core = 1 and u.core degree =
0, we use d(u) instead of |BNπ

q (u)|.
Time Complexity. The time complexity of GenerateWeight-

edGraph is O(|E(G)| × |E(q)|) with the same technique
in Algorithm 4 and the time complexity of the remainder
of Algorithm 5 is O(|E(q)|). So, the time complexity of
Algorithm 5 is O(|E(G)| × |E(q)|).

Tie Handling. When there are ties in the min function at
line 13, we prefer leading enumeration to the dense part
of q. So, the denominator |BNπ

q (u)| is replaced by the
following attribute with priority in order of: (1) u.core; (2)
u.core degree; and (3) d(u). If there are still ties, the vertex
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with a lower id is selected. Specifically, when |BNπ
q (u)| = 1

for every u ∈ UN ∩ VC , we use the tie handling to pick the
vertex because the Validate function in Algorithm 1 always
returns true if |BNπ

q (u)| = 1. When there are ties at line 5
and 17, the vertex with a lower id is selected.
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b The generation of π and P .

Fig. 8: The running example of Algorithm 5.

Example 5.2. Figure 8a shows qw generated from the run-
ning example in Figure 5. Take e(u0, u1) ∈ E(q) as
an example. We convert it to e(u0, u1) and e(u1, u0) in
E(qw) with w(u0, u1) = 2 and w(u1, u0) = 1 since there
are two edges between u0.C and u1.C where |u0.C| = 1
and |u1.C| = 2. Figure 8b illustrates the process of
picking a vertex. The start vertex of an edge is the pivot
of the end vertex, and the weight is the w∗ value of the
end vertex. In the top subfigure of Figure 8b, because
w∗[u3]

|BNπq (u3)|2 = 0.875 is less than w∗[u2]
|BNπq (u2)|2 = 3, u3 is

picked, and the pivot of u3 is u1. After that, w∗[u2] is set
to 1 since w(u3, u2) is less than the previous w∗[u2].

Algorithm 5 has the following property.

Proposition 5.1. The matching order π generated by Al-
gorithm 5 is connected, the query vertices in the core
structure are positioned before the other vertices in π.
All pairs of vertices in the pivot dictionary P form a
spanning tree of the query graph q.

6 EXPERIMENTS
In this section, we conduct extensive experiments to evalu-
ate the performance of VC on both real-world and synthetic
datasets.

6.1 Experimental Setup

Algorithms Under Study. We evaluate the following algo-
rithms in our experiments, which have different indices and
ordering strategies.

• VC: our algorithm. It has the bigraph index BI and
the vertex-based ordering strategy.

• CFL [3]: the state-of-the-art algorithm. It has the tree-
structured index CPI and the path-based ordering
strategy.

• GQL [11]: GraphQL algorithm. It has the neighbor-
hood signature filter and the left-deep-join ordering
strategy.

• QSI [23]: QuickSI algorithm. It does not have any
indices and adopts the infrequent-edge-first ordering
strategy.

Additionally, we compare VC and CFL with two other
algorithms SPath [28] and TurboIso [9], which adopt the
path-based ordering strategy. We do not involve SPath and
TurboIso in all of our experiments, because they utilize
the same ordering strategy as CFL, and CFL outperforms
them. We do not consider the Boost technique [20], which
accelerates subgraph matching by compressing data graphs,
because according to previous experiments [3] the compres-
sion has overhead, and the performance of CFL outperforms
CFL-Boost.

Experimental Environment. We obtain the source code
of CFL from its author, and implement the other algorithms
whose source code is unavailable. All involved algorithms
are implemented in C++ and compiled with g++ 4.9.3 with
the -O3 flag. We perform all experiments on a 64-bit Linux
machine equipped with an Intel Xeon E5-2660 v2 processor
and 32GB RAM.

Data Graphs. We evaluate the performance on the fol-
lowing real and synthetic datasets.

Real Datasets. We select six real datasets, which have been
widely used in previous work [3], [20], [25]. Yeast, Human,
HPRD and WordNet originally contain labels. The other
two datasets have no labels, to each of which we randomly
assign distinct labels. Table 2 lists the detailed information.

TABLE 2: Properties of real datasets where d is the average
degree, LF is the label frequency and LF.SD is the standard
derivation of LF.

Dataset |V| |E| |Σ| d LF LF.SD
Yeast 3,112 12,519 71 8.04 43.83 102.94

Human 4,674 86,292 44 36.91 106.23 146.80
HPRD 9,460 34,998 307 7.39 30.81 92.32

WordNet 76,853 120,399 5 3.13 15,370.6 23,960.25
Youtube 1,134,890 2,987,624 25 5.27 45,395.6 194.46

US Patents 3,774,768 16,518,948 20 8.75 188,738.4 549.6

Synthetic Datasets. We generate synthetic datasets using
the RMAT model [4] and randomly assign labels to vertices.
To examine the scalability of the algorithms on a variety
of data graphs, we vary |V (G)|, d(G) and |Σ| respectively.
The default configuration is |V (G)| = 100K (K = 103),
d(G) = 16 and |Σ| = 30.

• Vary |V (G)|: We generate 4 data graphs with the
number of vertices as 100K, 150K, 200K and 250K
respectively.

• Vary d(G): We generate 4 data graphs with the
degrees as 8, 16, 24 and 32 respectively.

• Vary |Σ|: We generate 4 data graphs with the number
of distinct labels as 20, 30, 40 and 50 respectively.

Query Sets. Following previous research [3], [20], [25],
we generate query graphs by selecting subgraphs from a
data graph randomly to guarantee that at least one match
exists. For each data graph, we generate eight query sets
as default queries to evaluate the performance of the com-
peting algorithms, and four query sets with large query
graphs to examine their scalability. Each query set contains
200 query graphs with the same number of vertices. Each
query graph is connected. Specifically, six query sets contain
non-sparse query graphs (i.e., average degree > 3), while
the other six query sets contain sparse query graphs (i.e.,
average degree < 3). The query sets of each data graph are
shown in Table 3, where qiN represents a set of i-vertex
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Fig. 9: Execution time on the real datasets with |V (q)| varied.

non-sparse query graphs and qiS denotes a set of i-vertex
sparse query graphs. The query graphs for WordNet and
Human are smaller, because 63,098 of the 76,853 vertices
(i.e., > 80%) in WordNet have the same label and Human
is very dense. As a result, subgraph matching on these two
graphs is harder than the other four graphs.

TABLE 3: Query sets information.
Dataset Default Queries Large Queries
Yeast, HPRD, Youtube,
US Patents, Synthetic

q8N , q16N , q24N , q32N ,
q8S , q16S , q24S , q32S

q64N , q128N ,
q64S , q128S

Human, WordNet q8N , q12N , q16N , q20N ,
q8S , q12S , q16S , q20S

q25N , q30N ,
q25S , q30S

Metrics. The evaluation metrics of previous algorithms,
which only examine the average execution time of query
sets and set time limit for processing the entire query set,
can hide the details of the execution time per query due
to ”stragglers” [13]. Therefore, following [13], we examine
query graphs in query sets individually. The time limit for
processing a query graph is 10 minutes (i.e., 6 × 105 ms). If
an algorithm cannot finish within the time limit, we record
the elapsed time as 10 mins for comparison purpose. The
detailed metrics are as follows.

• Execution Time: The average time of processing a
query graph in a query set, which excludes the time
of loading the data from the disk. It consists of the
indexing time and the enumeration time.

• Relative Performance: The relative performance of an
algorithm a on a query is ta

mina′∈A ta′
where ta is the

execution time of a on the query and A is the set of
algorithms involved. We report the average relative
performance of a query set. The minimum value of
this metric is 1, indicating that the algorithm is very
competitive on each query graph in the query set.

• Execution Time Category: Following the settings in
[13], we categorize queries that finish within 2 sec-
onds into the easy category, and that finish between
2 seconds to 10 mins into the median category. The
term completed refers to all queries that finish within
10 mins (easy and median). The queries that are termi-
nated due to time limit are called hard queries.

To compare different indices, we use the following met-
rics.

• Indexing Time: The average time spent on the index-
ing phase for processing a query graph.

• Index Size: The average number of candidates in the
index for processing a query graph, which is used to
evaluate the filtering power of the index.

#Embeddings. We vary the number of embeddings to
be reported from 103 to 109. As subgraph matching aims to
find all embeddings, we set the default number of embed-
dings to 109 to cover as much search space as time allows.

6.2 Comparison with Existing Algorithms

Evaluation on the execution time. In Figure 9, all algo-
rithms generally spend more time on larger queries. The
performance of QSI, GQL and CFL varies on different data
graphs. CFL outperforms GQL and QSI on Yeast, Youtube,
US Patents and WordNet, but performs worse than GQL on
non-sparse query graphs on HPRD and Human (CFL was
not compared with GQL in previous research). VC consis-
tently outperforms the other algorithms on all data graphs
and improves upon existing algorithms by over an order
of magnitude (Figure 9b, 9c and 9f), which demonstrates
the efficiency and robustness of VC. The performance gap
among GQL, CFL and VC is small on HPRD, because the
large number of distinct labels makes HPRD an easy dataset
for queries. In Figure 9c and 9f, the curves of QSI, GQL and
CFL appear insensitive to the increase of query size. It is
because a large number of queries cannot complete within
the time limit (see Figure 11) and their execution times are
replaced with 10 minutes. As such, the actual performance
gap between VC and existing algorithms is greater than that
shown in Figure 9, as the number of hard queries of VC is
much fewer than that of the other three algorithms.

As the performance of the algorithms has similar trends
on sparse query graphs and non-sparse query graphs, next,
we only report the results of relative performance and
execution time category on non-sparse query graphs.

Evaluation on the relative performance. As shown in
Figure 10, the relative performance of VC is very close to
1 on all datasets, and outperforms the others by up to two
orders of magnitude in some cases (Figure 10c and 10f). In
comparison, the other three algorithms all have a relative
performance slower than 1, because they process a large
number of false positive candidates and generate a less
effective matching order than VC.

Evaluation on the execution time category. All algo-
rithms complete queries on HPRD within two seconds, so
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Fig. 10: Relative performance on the real datasets with |V (q)| varied.
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Fig. 11: Execution time category on the real datasets with |V (q)| varied.

we omit the result on HPRD. Figure 11 presents the execu-
tion time category on the other five datasets. The portion of
median and hard queries generally increases with the query
size. VC has more easy queries and fewer hard queries than
the others, especially when the query sizes are large. This
result also reflects the efficiency and robustness of VC.

Comparison with SPath and TurboIso. In this experi-
ment, we compare VC and CFL with SPath and TurboIso on
HPRD and Yeast. As shown in Figure 12, CFL outperforms
TurboIso, and TurboIso runs faster than SPath, which is
consistent with the previous experiment results [3], [9].
Moreover, VC performs the best among the four algorithms.
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Fig. 12: Comparison with SPath and TurboIso.

For brevity, we only report results on execution time
of q16N for Human and WordNet and q24N for the other
datasets in the following experiments unless we state that
we use different queries.

6.3 Scalability Evaluation
Evaluation on the synthetic datasets. Figure 13a shows the
execution time with d(G) varied. All algorithms take longer
time with the increase of d(G), because the growth of d(G)
results in the increase of the search breadth. VC consistently
outperforms the others, and the performance gap between
VC and others narrows down when d(G) = 32, because
existing algorithms failed to complete on a large number of
queries when d(G) = 32. In Figure 13b, the execution time
of involved algorithms decreases with the increase of |Σ|.
CFL, GQL and QSI have severe performance issues when
|Σ| is small, as the search breadth is large then. Figure 13c
shows the experiment results with |V (G)| varied. Compared
with d(G) and |Σ|, |V (G)| does not have a significant impact
on the execution time.

Evaluation with #embeddings varied. As shown in
Figure 14, the execution time of all algorithms increases
when more embeddings are reported, and VC consistently
outperforms the other algorithms.
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Fig. 13: Execution time on synthetic datasets.
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Fig. 14: Execution time with #embeddings varied.

Evaluation on the large queries. Figure 15 shows the
execution time on query sets that contain the large query
graphs. VC runs much faster than the other three algo-
rithms, which shows that VC scales better than the other
algorithms on large queries.
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Fig. 15: Execution time on large queries.

6.4 Effectiveness of BI and the Vertex-based Ordering
Strategy
We proposed two techniques in VC: BI index and the vertex-
based ordering strategy. In this section, we evaluate these
techniques respectively with real datasets.

6.4.1 Effectiveness of BI
To evaluate the effectiveness of BI, we compare four kinds
of indexing strategies in terms of index size, indexing time
and index memory cost. Since the space complexity of all
these strategies is O(|E(G)| × |V (q)|), the memory cost of
indices is very small in practice and all of them consume
less than 10MB on each of the six datasets. Thus, we omit
the experiment results on index memory cost.
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Fig. 16: Experiment results on effectiveness of techniques proposed in VC.

• CPI: the tree-structured index in CFL [3]. It is con-
structed by the top-down generation and bottom-up
refinement.

• BI-Naive: BI index constructed by the forward gen-
eration.

• BI-ESIC: BI index constructed by the forward gener-
ation and the backward filtering based on the exact
star isomorphism constraint and the ping-pong fil-
tering strategy.

• BI-PSIC: BI index constructed by the forward genera-
tion and the backward filtering based on the pseudo
star isomorphism constraint and the ping-pong fil-
tering strategy.

Evaluation on the index size. As shown in Figure 16a,
BI-Naive generates more candidates than the others, since
it does not have any filtering processes. BI-PSIC and BI-
ESIC both obtain fewer candidates than CPI on all datasets,
which demonstrates that they have stronger filtering power
than CPI. BI-PSIC’s number of candidates is almost identical
to BI-ESIC. Because Human is dense and most vertices
in WordNet have an identical label, BI-PSIC and BI-ESIC
reduce around 15% and 21% candidates respectively over
BI-Naive and CPI.

Evaluation on the indexing time. Figure 16b shows the
experiment results on indexing time. CPI, BI-Naive and BI-
PSIC have the same time complexity, and BI-Naive generally
runs faster than the other strategies, since it has the forward
generation process only. However, both CPI and BI-PSIC
outperform BI-Naive when the number of candidates is
significantly reduced (i.e., on US Patents), because the time
spent on extracting edges between candidate sets decreases
with a small number of candidates. BI-PSIC outperforms BI-
ESIC by up to 8X in terms of indexing time.

Evaluation of the effects of BI on VC. We integrate
BI-Naive, BI-ESIC and BI-PSIC with VC respectively to
evaluate the effects of different indexing strategies on the
performance of VC. Figure 16c shows the experiment results
on the execution time. Comparing the results in Figure
16b and 16c, we observe that the indexing time dominates
the execution time on HPRD, whereas the enumeration
time, which is the time spent on the enumeration process,
dominates on the other datasets. Due to the poor indexing
time efficiency of BI-ESIC, BI-PSIC outperforms it by 3.2X
on HPRD. On the other datasets, BI-ESIC and BI-PSIC spend
almost the same amount of execution time, and both outper-
form BI-Naive. Although BI-PSIC and BI-ESIC significantly

reduce the number of candidates compared with BI-Naive,
the performance improvement is not as significant (around
1.26X-2.19X). This difference is because the vertex-based
ordering strategy in VC is robust to the number of false
positive candidates as it considers both the connectivity
among query vertices and the number of candidates.

In summary, BI-PSIC’s filtering power is as strong as
BI-ESIC, and its time efficiency on index construction is
much faster. As a result, BI-PSIC outperforms BI-ESIC when
the indexing time dominates execution time, and achieves
similar performance improvements when the enumeration
time dominates.

Evaluation of the effects of BI on existing algorithms.
In order to evaluate the benefits of BI (BI with PSIC) further
and show its generability, we integrate CFL, QSI and GQL
with BI, which are denoted as BI-CFL, BI-QSI and BI-GQL
respectively. As shown in Figure 16d, the performance of
all integrated algorithms are improved compared with their
original versions, because (1) BI reduces the number of false
positive candidates to provide more accurate information
for matching order generation; and (2) BI reduces the search
breadth. Moreover, to the best of our knowledge, BI is the
first index that can be integrated with different kinds of
ordering strategies, whereas the previous tree-structured
index supported the path-based ordering strategy only.

6.4.2 Effectiveness of the vertex-based ordering strategy
To study the effect of our proposed vertex-based ordering
strategy, we integrate ordering strategies in QSI, GQL and
CFL with BI. Figure 16e shows the experiment results on
different ordering strategies. Because the indexing time
dominates the execution time on HPRD, these algorithms
have similar performance on HPRD. On the other datasets,
the performance of BI-QSI, BI-GQL and BI-CFL varies, and
there is no single winner on all datasets among them, in-
cluding the path-based ordering strategy, which is regarded
as an effective technique in previous research. In contrast,
VC consistently outperforms the other algorithms, which
demonstrates the efficiency and robustness of our proposed
vertex-based ordering strategy.

6.5 Integration with Existing Acceleration Techniques
Instead of designing new subgraph matching algorithms,
some researchers [13] tried to accelerate subgraph matching
by utilizing existing algorithms based on the observation
that it is difficult to design a subgraph matching algorithm
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that outperforms others for all queries on all datasets. They
proposed a framework called PSI, which executes a variety
of algorithms in parallel simultaneously (each algorithm
instance executes in serial) and returns the results when one
algorithm instance completes. To evaluate the effects of VC
on PSI, we compare the following algorithms: PSI (contains
QSI, GQL and CFL, 3 threads), VC (1 thread) and VC-PSI
(contains BI-QSI, BI-GQL, BI-CFL and VC, 4 threads). As
shown in Figure 16f, VC outperforms PSI by 1.21-9.47X,
and VC-PSI achieves 1.05-1.27X speedups over VC, which
shows that VC significantly improves the performance of
PSI. Additionally, we examine the number of stragglers of
VC that are accelerated by VC-PSI. Specifically, we regard a
query as a straggler of VC if VC-PSI runs over five times
faster than VC on this query. As shown in Table 4, VC
has a small number of stragglers (200 queries in total).
Nevertheless, as VC outperforms others on most cases, the
benefit of PSI is limited for VC. Furthermore, PSI consumes
more computing resources than VC.

TABLE 4: Number of stragglers accelerated by VC-PSI.
HPRD Yeast Youtube US Patents Human WordNet

0 2 0 1 5 1

In addition to parallelization, PSI [13] designs the query
rewriting technique to further accelerate subgraph matching,
which keeps the structure of the query graph, but reassigns
the ids of vertices following some heuristic rules, such as the
descending order of degrees. This technique will affect the
matching order when there are ties during the generation
of matching orders and the integrated algorithms do not
handle the ties. However, because VC has well-designed tie
handling strategies, the query rewriting has little effect on
our vertex-based ordering strategy. We omit the experiment
results of the query rewriting for brevity.

7 CONCLUSION
In this paper, we propose a new subgraph matching algo-
rithm VC. By partitioning the indexing phase into candidate
extraction, matching order generation and index construc-
tion, we break the limitations in the tree-based frameworks
[3], [9]. We construct a bigraph index BI along the indexing
order with the pseudo star isomorphism constraint and the
ping-pong filtering strategy, which possesses better filtering
power than index structures in previous work [3]. Most
importantly, by abstracting the enumeration into the explo-
ration of a state space tree, we propose the vertex-based
ordering strategy to address the serious performance issues
caused by existing ordering strategies. Detailed experiments
on the real and synthetic datasets show that VC achieves
significant performance improvements over existing algo-
rithms.

REFERENCES

[1] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating subgraph
instances using map-reduce. ICDE, 2013.

[2] V. Batagelj and M. Zaversnik. An o (m) algorithm for cores
decomposition of networks. arXiv preprint cs/0310049, 2003.

[3] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph
matching by postponing cartesian products. SIGMOD, 2016.

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive
model for graph mining. SDM, 2004.

[5] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. TPAMI, 2004.

[6] M. R. Garey and D. S. Johnson. Computers and intractability: a
guide to the theory of np-completeness. WH Free. Co., 1979.

[7] J. A. Grochow and M. Kellis. Network motif discovery using
subgraph enumeration and symmetry-breaking. RECOMB, 2007.

[8] M. Hall. Combinatorial theory. John Wiley & Sons, 1998.
[9] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and

robust subgraph isomorphism search in large graph databases.
SIGMOD, 2013.

[10] H. He and A. K. Singh. Closure-tree: An index structure for graph
queries, 2006.

[11] H. He and A. K. Singh. Graphs-at-a-time: query language and
access methods for graph databases. SIGMOD, 2008.

[12] J. E. Hopcroft and R. M. Karp. A n5/2 algorithm for maximum
matchings in bipartite. Annual Symposium on Switching and Au-
tomata Theory, 1971.

[13] F. Katsarou, N. Ntarmos, and P. Triantafillou. Subgraph querying
with parallel use of query rewritings and alternative algorithms.
EDBT, 2017.

[14] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H.
Jarrah. Dualsim: Parallel subgraph enumeration in a massive
graph on a single machine. SIGMOD, 2016.

[15] R. Kimmig, H. Meyerhenke, and D. Strash. Shared memory
parallel subgraph enumeration. In IPDPS, 2017.

[16] L. Lai, L. Qin, X. Lin, and L. Chang. Scalable subgraph enumera-
tion in mapreduce. PVLDB, 2015.

[17] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang. Scalable
distributed subgraph enumeration. VLDB, 2017.

[18] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth com-
parison of subgraph isomorphism algorithms in graph databases.
PVLDB, 2012.

[19] M. Qiao, H. Zhang, and H. Cheng. Subgraph matching: on
compression and computation. PVLDB, 2017.

[20] X. Ren and J. Wang. Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs. PVLDB, 2015.

[21] X. Ren and J. Wang. Multi-query optimization for subgraph
isomorphism search. In PVLDB, 2016.

[22] S. B. Seidman. Network structure and minimum degree. Social
networks, 1983.

[23] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hard-
ness: an efficient algorithm for testing subgraph isomorphism.
PVLDB, 2008.

[24] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu. Parallel subgraph
listing in a large-scale graph. SIGMOD, 2014.

[25] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph
matching on billion node graphs. PVLDB, 2012.

[26] J. R. Ullmann. An algorithm for subgraph isomorphism. JACM,
1976.

[27] D. B. West et al. Introduction to graph theory. Prentice hall Upper
Saddle River, 2001.

[28] P. Zhao and J. Han. On graph query optimization in large
networks. PVLDB, 2010.

Shixuan Sun received his M.S. and B.S.
in Computer Science from Tongji University,
Shanghai, China, in 2014 and 2011 respectively.
He is currently working toward the PhD degree
in the Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology. His research interests are in the
area of graph query processing.

Qiong Luo received her Ph.D. in Computer Sci-
ence from the University of Wisconsin-Madison
in 2002, her M.S. and B.S. in Computer Science
from Beijing (Peking) University, China in 1997
and 1992 respectively. She is currently an Asso-
ciate Professor at the Department of Computer
Science and Engineering, Hong Kong Univer-
sity of Science and Technology. Her research
interests are in big data systems, parallel and
distributed systems, and scientific computing.

Authorized licensed use limited to: National University of Singapore. Downloaded on November 01,2020 at 07:00:43 UTC from IEEE Xplore.  Restrictions apply. 


