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ABSTRACT
We study the performance of eight representative in-memory

subgraph matching algorithms. Specifically, we put QuickSI,

GraphQL, CFL, CECI, DP-iso, RI and VF2++ in a common

framework to compare them on the following four aspects:

(1) method of filtering candidate vertices in the data graph;

(2) method of ordering query vertices; (3) method of enumer-

ating partial results; and (4) other optimization techniques.

Then, we compare the overall performance of these algo-

rithms with Glasgow, an algorithm based on the constraint

programming. Through experiments, we find that (1) the

filtering method of GraphQL is competitive to that of the

latest algorithms CFL, CECI and DP-iso in terms of prun-

ing power; (2) the ordering methods in GraphQL and RI

are usually the most effective; (3) the set intersection based

local candidate computation in CECI and DP-iso performs

the best in the enumeration; and (4) the failing sets pruning

in DP-iso can significantly improve the performance when

queries become large. Our source code is publicly available

at https://github.com/RapidsAtHKUST/SubgraphMatching.
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1 INTRODUCTION
Subgraph matching finds all embeddings in a data graphG
that are isomorphic to a query graph q where both G and q
are labeled graphs. For example, given the graphs in Figure

1, {(u0,v0), (u1,v4), (u2,v5), (u3,v12)} is a match from q to G.
As one of the fundamental graph query operations, subgraph

matching is widely used in both academia and industry [44].
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(b) Data graph G.
Figure 1: Example graphs.

Due to the importance of subgraph matching, a variety

of algorithms have been proposed. In Table 1, we catego-

rize representative subgraph matching algorithms by their

computation models, main methods, and execution styles.

Most of the algorithms in the database community follow an

exploration-based method, which recursively extends inter-

mediate results by mapping query vertices to data vertices

along an order of query vertices [53]. In the artificial intelli-

gence and the bioinformatics communities, many algorithms

formulate subgraph matching within a state space represen-
tation where each state represents an intermediate result

[10]. The feasible state in the state space is a match. An-

other approach is based on the constraint programming in

which vertices and edges in q correspond to variables and

constraints respectively [48]. The domain of the variables

is the data vertices. This approach can evaluate subgraph

matching by finding assignments to variables that satisfy

the constraints. Despite the different models, these three

approaches all adopt the backtracking search, which recur-

sively extends partial results by mapping query vertices to

data vertices to find all solutions. An alternative approach is

to convert the query q to a multi-way join in which attributes

and relations correspond to vertices and edges in q respec-

tively, and evaluate the multi-way join to find all results

[15]. Additionally, researchers accelerate subgraph matching

by utilizing the parallel computation capability provided by

hardware (e.g., GPUs [54]) and distributed environments.
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Table 1: A summary of representative subgraph matching methods.
Community Model Methodology Algorithms/Systems

Sequential Parallel

Database Exploration Backtracking Search QuickSI [45], GADDI [58], SPath [59],

GraphQL [21], TurboIso [19], BoostIso [42],

CFL [7], SGMatch [43], CECI [6], DP-iso [17]

PGX [41], PSM [51], STwig [53]

Multi-Way Join

Pair-Wise Join PostgreSQL, MonetDB, Neo4j GpSM [54]

Worst-Case Optimal Join LogicBlox [5] EmptyHeaded [1], GraphFlow [24]

Artificial Intelligence State Space Representation Backtracking Search Ullmann [55], VF2 [13], VF2++ [23], VF3 [10] VF3P [9]

Constraint Programming Backtracking Search LAD [47], Glasgow [4] pGlasgow [4, 35]

Bioinformatics State Space Representation Backtracking Search RI [8], VF2+ [11] pRI [28], Grapes [14]

Researchers have also put a lot of effort on some other

graph query operations closely related to subgraph match-

ing: (1) subgraph enumeration, which focuses on unlabeled

graphs; (2) subgraph containment, which finds data graphs

containing the given query graph from a collection of data

graphs; and (3) visual subgraph query, which aims to pro-

vide user-friendly graphic user interfaces to make it easy for

non-expert users to explore graph databases.

In this paper, we study eight representative in-memory

subgraphmatching algorithms by their individual techniques.

We categorize the algorithms under study into three kinds.

The first kind of algorithms (e.g., QuickSI [45]) follow the

direct-enumeration framework, which directly exploresG to

enumerate all results. Most algorithms based on the state

space representation model (e.g., RI [8] and VF2++ [23])

adopt this framework as well. The second category of algo-

rithms (e.g., GADDI [58], SPath [59] and SGMatch [43]) uti-

lize the indexing-enumeration framework, which constructs

indices on G and answers all queries with the assistance of

the indices. The third group of algorithms (e.g., GraphQL

[21], TurboIso [19], CFL [7], CECI [6] and DP-iso [17]) adopt

the preprocessing-enumeration framework, which is widely

used in the recent algorithms in the database community.

Specifically, these algorithms first generate a candidate vertex
set for each query vertex, and build auxiliary data structures

maintaining edges between candidate vertex sets. Then, they

generate amatching order based on auxiliary data structures.

Finally, they enumerate all results with the assistance of the

auxiliary data structures along the matching order. Addition-

ally, some algorithms design other optimization strategies

to further reduce the search space during the enumeration.

Because these steps are closely related, they all affect the

subgraph matching performance. Unfortunately, all previ-

ous studies [26, 33] regarded each algorithm as a whole to

compare their performance, and none of them evaluated the

effectiveness of individual techniques such as the filtering

method and the ordering method.

Our Work. We propose to study the performance of in-

memory subgraph matching algorithms on four aspects: (1)

method of filtering candidate vertices; (2) method of ordering

query vertices; (3) method of enumerating partial results;

and (4) other optimization techniques. We are not limited to

giving a simple comparison of absolute performance between

algorithms on the elapsed time of answering a query; rather,

we investigate individual techniques in existing algorithms,

and pinpoint the techniques in an algorithm that lead it to

the performance differences.

We focus on five representative algorithms, which are

QuickSI, GraphQL, CFL, CECI andDP-iso. Specifically, QuickSI

and GraphQL performed well in a previous performance

study [33]. CFL, CECI and DP-iso are the state-of-the-art

algorithms that were not involved in any previous perfor-

mance studies. We do not study any indexing-enumeration

algorithms, because a previous performance study [33] has

reported the issues incurred by the indices. For the selected al-

gorithms, we first compare and analyze the filtering methods,

the ordering methods, the enumeration methods and the op-

timization methods correspondingly. Then, we re-implement

these algorithms within a common framework and optimize

them with our best effort for the comparison.

Moreover, we study three algorithms proposed in other

communities, which are RI [8], VF2++ [23] and Glasgow

[4]. RI won the International Contest on Pattern Search in

Biological Databases [56]. VF2++ significantly outperforms

the widely used VF2 [13] algorithm. Glasgow is optimized

for deciding whether G contains q, and supports finding all

matches from q to G . As it is a very efficient algorithm in AI

community [36], we study it in our experiments as well. We

re-implement RI and VF2++ within our framework. As Glas-

gow is based on the constraint programming, it cannot be

integrated into the framework. Therefore, we only compare

the overall performance of Glasgow with other algorithms.

We conduct experiments on both real-world and synthetic

datasets to study the performance of competing methods,

and provide an in-depth analysis. In summary, we make the

following contributions in this paper.

• We study the performance of eight subgraph matching

algorithms from three research communities.

• We compare and analyze filtering methods, ordering

methods, enumerationmethods and optimizationmeth-

ods in seven selected algorithms respectively.

• We conduct experiments with both real-world and

synthetic datasets to examine the effectiveness of each

kind of methods respectively.

• We report our new findings through our experiments

and analysis.
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Table 2: Notations.
Notations Descriptions
д, q and G graph, query graph and data graph

V , E and Σ vertex set, edge set and label set

d (u ), L(u ) and N (u ) degree, label and neighbors of u
e (u,v ) an edge between u and v
д[V ] vertex-induced subgraph of д on V
E (qt ) and E (qt ) tree edges and non-tree edges of qt
qt , u .c and u .p spanning tree of q , the child and the parent of u in qt
C and LC candidate vertex set and local candidate vertex set

f and φ subgraph isomorphism and matching order

N φ
+ (u ) (N φ

− (u )) backward (forward) neighbors of u given φ
A auxiliary data structure

Au
u′ (v ) neighbors of v in C (u′) where v ∈ C (u )

2 BACKGROUND AND RELATEDWORK
2.1 Preliminaries
In this paper, we focus on the undirected labeled graph д =
(V ,E) where V is a set of vertices and E is a set of edges.

Given u ∈ V , N (u) denotes the neighbors u ′ of u, i.e., {u ′ ∈
V |e (u,u ′) ∈ E}. Given V ′ ⊆ V , д[V ′] is the vertex-induced
subgraph of д on V ′. Graph д is vertex-labeled, i.e., there

is a label function L that associates a vertex u in V to a

label l in a label set Σ. The query graph and the data graph

are denoted by q and G respectively. We call the vertices in

V (q) query vertices, and the vertices in V (G ) data vertices.
q and G share the same label function L. Given q, 2-core
of q is a maximal connected subgraph q′ of q that satisfies

∀u ∈ V (q′),d (u) ⩾ 2, where d (u) is the degree of u in q′.
We call query vertices in 2-core of q the core vertices. We

summarize the notations frequently used in Table 2. Next,

we give a formal definition of subgraph matching and related

preliminaries.

Definition 2.1. Subgraph Isomorphism: Given q = (V ,E)
and G = (V ′,E ′), a subgraph isomorphism is an injective
function f from V to V ′ such that (1) ∀u ∈ V ,L(u) =
L( f (u)); and (2) ∀e (u,u ′) ∈ E,e ( f (u), f (u ′)) ∈ E ′.

Problem Definition. Given q andG , subgraph matching

is to find all subgraph isomorphisms from q to G.
For brevity, we call a subgraph isomorphism a match. We

assume that q is connected and |V (q) | ⩾ 3, because it is

trivial to find all matches of a single vertex or a single edge.

Common Framework. Lee et al. [33] proposed a com-

mon framework to generalize the backtracking search of

subgraph matching algorithms. Based on their work, we

abstract and define some important concepts used in the

latest algorithms. Algorithm 1 presents the generic subgraph

matching framework, which takes q and G as input and out-

puts all matches from q to G. For each vertex u ∈ V (q), line
1 first generates a complete candidate vertex set C (u) defined
in Definition 2.2, and builds an auxiliary data structure A

that maintains edges between candidate vertex sets. Given

e (u,u ′) ∈ E (q) and v ∈ C (u), Au
u′ (v ) = N (v )

⋂
C (u ′), i.e.,

the neighbors of v in C (u ′).

Algorithm 1: Generic Subgraph Matching
Input: a query graph q and a data graphG ;

Output: all matches from q to G ;

/* The filtering method. */

1 C, A ← generate candidate vertex sets and build auxiliary data structure;

/* The ordering method. */

2 φ ← generate a matching order;

/* The enumeration method. */

3 Enumerate(q,G,C, A, φ, { }, 1);
4 Procedure Enumerate(q,G,C, A, φ,M, i)
5 if i = |φ | + 1 then Output M , return;
6 u ← select an extendable vertex given φ and M ;

/* The local candidate computation method. */

7 LC (u,M ) ←ComputeLC(q,G,C, A, φ,M, u, i);
8 foreach v ∈ LC (u,M ) do
9 if v < M then

10 Add (u,v ) to M ;

11 Enumerate(q,G,C, A, φ,M, i + 1);
12 Remove (u,v ) from M ;

Definition 2.2. Complete Candidate Vertex Set: Given q
and G, a complete candidate vertex set C (u) of u ∈ V (q) is
a set of data vertices such that for each v ∈ V (G ), if (u,v )
exists in a match from q to G, then v belongs to C (u).

With candidate vertex sets and auxiliary data structures,

line 2 generates a matching order defined in Definition 2.3.

We further define the backward (forward) neighbors.

Definition 2.3. Matching Order: A matching order φ is a

permutation of V (q). φ[i] is the ith vertex in φ, and φ[i : j]
is the set of vertices from index i to j (1 ⩽ i ⩽ j ⩽ |φ |).

Definition 2.4. Backward (Forward) Neighbors: Given an

order π of query vertices, the backward (forward) neighbors

N π
+ (u) (N

π
− (u)) of u ∈ π are the neighbors of u positioned

before (after) u in π .

Line 3 recursively enumerates all results.M records map-

pings from query vertices to data vertices. If all query vertices

have been mapped, then line 5 outputsM . Otherwise, line 6

selects an extendable vertex defined as follows.

Definition 2.5. Extendable Vertices: Given φ and M , ex-

tendable vertices Γ(φ,M ) are query vertices u such that each

u ′ ∈ N
φ
+ (u) has been mapped inM but u has not.

Line 7 computes the local candidate vertex set LC (u,M ) =
{v ∈ C (u) |∀u ′ ∈ N

φ
+ (u),e (v,M[u ′]) ∈ E (G )} whereM[u ′] is

the data vertex mapped to u ′. Lines 8-12 loop over LC (u,M )
to extend M , and recursively invoke the Enumerate proce-
dure. Suppose that the first i vertices in φ have been mapped

inM . Then,M is a match from q[φ[1 : i]] to G.

2.2 Related Work
Subgraph Matching. Table 1 lists a variety of subgraph

matching algorithms. The representative backtracking based

algorithms will be introduced in Section 3. An alternative

approach of the backtracking search is to convert subgraph
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matching to a multi-way join. The worst-case optimal join

is a kind of join algorithms whose running time matches

the maximum output size of a query [38]. Previous exper-

iment results showed that the database system LogicBlox

[5] based on WCOJ outperformed the database systems (e.g.,

PostgreSQL,MonetDB andNeo4j) based on the pair-wise join

(PJ) on subgraph matching queries [39]. EmptyHeaded [1]

and Graphflow [24] developed by the academia adopt WCOJ

to evaluate in-memory subgraph matching. As the join plan

has an important impact on the performance, EmptyHeaded

and Graphflow proposed methods to optimize it. Specifically,

EmptyHeaded picks the generalized hypertree decomposition
(GHD) [15] of q with the minimum width as the join plan

among all GHDs. EmptyHeaded evaluates the sub-query (i.e.,

a GHD node ) by WCOJ with an arbitrary ordering of query

vertices in the sub-query. After that, EmptyHeaded executes

a sequence of PJ on intermediate results of sub-queries to

obtain final results. Graphflow designs an adaptive join plan

generator based on a cost model considering the statistics of

q and G as well as the cost of primitive operators, e.g., hash

joins [37]. Among all possible plans, Graphflow picks the

minimum cost one. Moreover, Graphflow not only consider

to extend one vertex at a time but also conduct a PJ on two

sub-queries when enumerating join plans.

Although both the algorithms in our study and the WCOJ-

based algorithms can evaluate subgraph matching, the two

kinds of algorithms have several differences. Specifically,

the algorithms in our study target at queries with tens of

vertices, and are evaluated on datasets with thousands to mil-

lions of vertices, whereas the WCOJ-based methods focus on

smaller queries (generally less than 10 vertices) with datasets

containing millions to hundred of millions of vertices. The

WCOJ-based methods pick an "optimal" query vertex order

in a number of possible orders based on their cost models. In

contrast, the ordering methods in our study use the greedy

approach to generate a matching order based on some heuris-

tic rules or cost estimation, because it is very expensive to

enumerate all possible orders of tens of vertices. The algo-

rithms in our study design a variety of filtering methods to

reduce the candidates for each query vertex, whereas Empty-

Headed and Graphflow generally filter vertices based on the

label information. The WCOJ-based methods can perform

pair-wise joins on the intermediate results of two sub-queries.

In contrast, the algorithms in our study recursively extend

intermediate results by mapping query vertices to data ver-

tices. Additionally, the WCOJ-based methods by default find

subgraph homomorphisms, which allow that a result contains

the same data vertices.

Subgraph matching has been widely studied on multi-

core CPUs, such as PGX [41], PSM [51], VF3P [9], pRI [28],

and Grapes [14]. Graphflow [24] can execute with multi-

ple threads on CPUs. EmptyHeaded [1] exploits both multi-

threading and SIMD (single-instructionmultiple data). GpSM

[54] works on GPUs and is based on pair-wise joins. Except

the sequential version, CECI [6] and Glasgow [4, 35] can run

in parallel on both a single machine and multiple machines.

STwig [53] works in a distributed environment.

Subgraph Enumeration. Due to the lack of labels, the

search space of subgraph enumeration is much larger. Most

of the recent work utilizes distributed environments to par-

allelize the search. Afrati et al. [2] proposed a multiway join

based approach executing in one map-reduce round. Shao

et.al [46] presented an approach based on Giraph. Lai et al.

presented TwinTwig [30] and SEED [31] on MapReduce. To

reduce the output/shuffle cost, Qiao et al. proposed CRYSTAL

[40] to compress the intermediate results. Wang et al. [57] de-

signed a distributed algorithm with a recursive-backtracking

framework. BiGJoin [3] is a distributed algorithm based on

WCOJ. Lai et al. [32] conducted a comprehensive compar-

ison of the distributed algorithms. There are also parallel

algorithms working on a single machine, such as LIGHT

[50] and DualSim [27]. Moreover, both EmptyHeaded [1]

and Graphflow [24] can handle unlabeled graphs as well.

Subgraph Containment. Subgraph containment finds

all data graphs containing the query graph from a collection

of data graphs with tens to thousands of vertices. Most of

the algorithms follow the indexing-filtering-verification (IFV)

paradigm, such as CT-Index [29]. Previous research focused

on designing effective indices to eliminate unsatisfiable in-

stances without subgraph isomorphism test. However, the

indexing structures have severe scalability issues [25]. Sun

et al. [52] proposed to utilize the preprocessing-enumeration

subgraph matching algorithm to perform subgraph contain-

ment, which does not require any indices. Moreover, some

researchers argue that the filtering technique cannot be ben-

eficial when paired with reasonable subgraph isomorphism

test algorithms [36].

Visual Subgraph Query. Because queries are visually

offered by human, the visual subgraph query systems such as

QUBLE [22] and BOOMER [49] utilize the latency introduced

by the human interaction to process queries during query

formulation, which has several potential benefits such as

improving the system response time.

Graph Database Systems. A variety of graph databases

are developed to manage graphs efficiently, which supports

a collection of graph update and search operations. Recently,

researchers conduct a comprehensive study of existing graph

databases, give a guideline for system selection and provide

an open-source suite for studying graph database systems

[34]. In contrast, our paper focuses on in-memory algorithms

designed for a single graph query operation.
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3 COMPARISON AND ANALYSIS OF
COMPETING ALGORITHMS

In this section, we compare and analyze the competing meth-

ods under our study.

3.1 Filtering Methods
3.1.1 Overview

BasicMethods. The label and degree filtering (LDF) gener-
ates C (u) based on L(u) and d (u): C (u) = {v ∈ V (G ) |L(v ) =
L(u) ∧ d (v ) ⩾ d (u)}. All existing algorithms adopt LDF. The

neighbor label frequency filtering (NLF) utilizesN (u) to prune
C (u) as follows: given v ∈ C (u), if there exists l ∈ L(N (u))
such that |N (u,l ) | > |N (v,l ) | where L(N (u)) = {L(u ′) |u ′ ∈
N (u)} and N (u,l ) = {u ′ ∈ N (u) |L(u ′) = l }, then remove v
from C (u). CFL, CECI and DP-iso utilize NLF.

QuickSI, RI and VF2++. As direct-enumeration algo-

rithms, they do not generate candidate vertex sets before the

enumeration. Instead, they use some filtering rules to prune

invalid vertices during the enumeration (see Section 3.3).

GraphQL. GraphQL generates candidate vertex sets in

two steps, the local pruning and the global refinement. The

local pruning generatesC (u) based on the profile of the neigh-
borhood subgraph of u, which is the lexicographic order of

labels of u and neighbors within distance r (hops of neigh-
bors) from u, for example, the profile of u1 in Figure 1(a)

within distance 1 is ABCD. If the profile of u ∈ V (q) is a
sub-sequence of that of v ∈ V (G ), then add v to C (u). The
global refinement prunes candidate vertex sets generated

by the local pruning with a pseudo subgraph isomorphism

algorithm [20] as follows: given v ∈ C (u), (1) build a bipar-

tite graph Buv between N (u) and N (v ) by adding e (u ′,v ′)
to Buv where u ′ ∈ N (u) and v ′ ∈ N (v ) if v ′ ∈ C (u ′); (2)
check whether there is a semi-perfect matching in Buv , i.e., all
vertices in N (u) are matched; and (3) If not, remove v from

C (u). The pseudo subgraph isomorphism algorithm repeats

the above procedure k times where k is specified by users.

When k = 1 and r = 1, the time complexity is O ( |V (q) | ×
|E (G ) |+

∑
u ∈V (q )

∑
v ∈V (G ) (d (u)×d (v )+Θ(d (u),d (v ))))where

O ( |V (q) |×|E (G ) |) is the time on the local pruning,d (u)×d (v )
is the time on constructing Buv , and Θ(.) is the time com-

plexity of testing the existence of a semi-perfect matching.

0u

1u

2( )N u

2v

1( )N v

3u

0v

8v

(a) Bu2v1
.

0u

1u

2( )N u 3( )N v

3u

0v

4v

1 0v

(b) Bu2v3
.

Figure 2: Running example of filtering in GraphQL.

Example 3.1. Given graphs in Figure 1, the local prun-
ing generates C (u0) = {v0}, C (u1) = {v2,v4,v6}, C (u2) =
{v1,v3,v5} and C (u3) = {v10,v12} given r = 1. Given v1 ∈

0v

2v 4v

1 0v 1 2v

1v 3v 5v

0( )C u

1( )C u

2( )C u

3( )C u

(a) A after generation.

0v

2v 4v

1 0v 1 2v

3v 5v

0( )C u

1( )C u

2( )C u

3( )C u

(b) A after refinement.
Figure 3: Running example of filtering in CFL.

C (u2), the bipartite graph between N (u2) and N (v1) is shown
in Figure 2(a). As v0 ∈ C (u0) and v2 ∈ C (u1), we add e (u0,v0)
and e (u1,v2) to B

u2
v1
. We remove v1 from C (u2), since there is

no semi-perfect matching. In contrast, v3 is a valid candidate
of u2 in Figure 2(b).

CFL. Besides candidate vertex sets, CFL designs a tree-

structured auxiliary data structure A, called the compressed
path index. The space complexity of A in CFL is O ( |V (q) | ×
|E (G ) |), and the time complexity of the filtering method is

O ( |E (q) | × |E (G ) |). Specifically, CFL generates and prunes

candidate vertex sets based on the following observation.

Observation 3.1. Suppose that for each u ∈ V (q), C (u)
is complete. Su′ denotes N (v )

⋂
C (u ′) where v ∈ C (u) and

u ′ ∈ N (u). If the mapping (u,v ) exists in a match from q to
G, then v must satisfy for each u ′ ∈ N (u), Su′ , ∅.

Moreover, CFL derives the following two rules.

Generation Rule 3.1. Given X ⊆ N (u) where u ∈ V (q),
C (u) can be generated by

⋂
u′∈X N (C (u ′)), i.e., intersecting

the neighbors of candidates of u ′ ∈ X .

Filtering Rule 3.1. Given X ⊆ N (u) and v ∈ C (u) where
u ∈ V (q), if there exists u ′ ∈ X such that C (u ′)

⋂
N (v ) = ∅,

then v can be safely removed from C (u) without breaking its
completeness.

CFL first obtains a BFS tree qt of q, and then constructs

A in two phases: (1) generate C (u) along qt level-by-level
from top to bottom based on Generation Rule 3.1, and also

perform backward pruning at each level based on Filtering

Rule 3.1; and (2) refine C (u) along qt in a bottom-up order

based on Filtering Rule 3.1. Given u and its parent u .p in qt ,
A in CFL maintains edges between candidates inC (u .p) and
those in C (u). Example 3.2 illustrates the filtering in CFL.

Example 3.2. Given graphs in Figure 1, the BFS tree qt
of q is depicted by thick lines. In the generation phase, CFL
first generates C (u0) = {v0} with NLF. Based on C (u0), CFL
obtainsC (u1) = {v2,v4,v6} with the generation rule. Note that
when adding v to C (u), v must pass the check of LDF and
NLF. Similarly, CFL gets C (u2) = {v1,v3,v5} based on C (u0)
and C (u1). Next, it prunes C (u1) based on C (u2) by utilizing
the non-tree edge e (u1,u2) (the filtering rule). As a result, CFL
removes v6 fromC (u1).C (u3) is generated based onC (u1) and
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Figure 4: Running example of filtering in CECI.

C (u2). Figure 3(a) illustrates A after the generation. Next, the
bottom-up refinement first prunes C (u1) and C (u2) based on
C (u3), and then refines C (u0) based on C (u1) and C (u2). Take
C (u2) as an example: CFL removes v1 fromC (u2), since v1 has
no neighbor inC (u3).A after the refinement is shown in Figure
3(b). A maintains edges between candidate vertices during
both generation and refinement phases. Givenv4 ∈ C (u1), CFL
can directly retrieve that Au1

u3 (v4) = {v10,v12}.

CECI. CECI designs an auxiliary data structure A, called

the compact embedding cluster index. CECI generates and
refines candidate vertex sets based on the same observation

as CFL, but maintains candidate edges for both tree edges

and non-tree edges in qt . The time complexity and the space

complexity are both O ( |E (q) | × |E (G ) |).
CECI first generates a BFS treeqt ofq. To differentiate from

the matching order, the BFS traversal order is denoted by δ .
A in CECI is built in two phases: (1) the construction and

filtering along the order of δ ; and (2) the refinement along

the reverse order of δ . In the first phase, CECI generatesC (u)
based on C (up ) along δ with Generation Rule 3.1, and then

prunes C (u) based on C (un ) along δ with Filtering Rule 3.1

whereun ∈ N
δ
+ (u)−{up } (i.e., the non-tree edge e (un ,u) such

that un is before u in δ ). Moreover, when constructing and

pruning C (u) based on C (up ) (or C (un )) at each step, CECI

rules out v from C (up ) (or C (un )) if v has no neighbors in

C (u). In the second phase, CECI refinesC (u) based onC (uc )
with Filtering Rule 3.1 along the reverse order of δ where

uc is the child of u. A in CECI maintains edges between

candidates in C (u) and C (u ′) where u ′ ∈ N δ
+ (u) (i.e., both

tree and non-tree edges in qt ). Example 3.3 shows a running

example of CECI.

Example 3.3. Given graphs in Figure 1, qt is depicted by
thick lines, and δ = (u0,u1,u2,u3). Based on NLF,C (u0) = {v0}.
CECI generates C (u) based on C (up ). The result is shown in
Figure 4(a). After that, CECI uses non-tree edges to pruneC (u)
along δ . Take e (u1,u2) as an example: CECI loops over C (u2)
to remove candidates having no neighbors in C (u1), and rules
out candidates inC (u1) that have no neighbor inC (u2) as well.
As a result, v6 is removed from C (u1). Similarly, v1 is ruled
out from C (u2) when the non-tree edge e (u2,u3) is considered.
The result after pruning with non-tree edges is shown in Figure
4(b). In the second phase, CECI refines C (u) based on C (uc )
along the reverse order of δ . In this example, the refinement
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3v 5v

0( )C u
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2( )C u

3( )C u

(a) The 1st refinement of A.
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(b) Final result of A.
Figure 5: Running example of filtering in DP-iso.

does not update the candidates, and the result is the same as
in Figure 4(b). Different from CFL,A in CECI maintains edges
between candidates for each edge in E (q).

DP-iso. DP-iso designs an auxiliary data structure A,

called candidate space, which maintains edges between can-

didates inC (u) and those inC (u ′) if e (u,u ′) ∈ E (q). The time

complexity and the space complexity are both O ( |E (q) | ×
|E (G ) |). DP-iso first performs a BFS on q from the selected

vertex, and the BFS traversal order is denoted by δ . For each
u ∈ V (q), DP-iso generatesC (u) with LDF. After that, DP-iso
refines C (u) based on Filtering Rule 3.1. In the first phase,

DP-iso refines C (u) based on C (u ′) where u ′ ∈ N δ
− (u) along

the reverse order of δ . In this phase, DP-iso uses NLF to prune
invalid candidates as well. In the second phase, DP-iso re-

finesC (u) based onC (u ′) where u ′ ∈ N δ
+ (u) along the order

of δ . DP-iso repeats the k refinement phases by alternating

the reverse order of δ and the order δ where k is specified

by the user. The original paper sets k to 3. DP-iso records

edges between candidates after the refinement. Example 3.4

shows a running example of DP-iso.

Example 3.4. Given graphs in Figure 1, DP-iso obtains
δ = (u0,u1,u2,u3). The 1st refinement phase prunes candidates
along the reverse order of δ . Based on NLF, C (u3) = {v10,v12}.
Next, DP-iso refines C (u2) based on C (u3). The result after the
1st refinement is shown in Figure 5(a) where the dashed line
illustratesC (u) is refined based on which candidate vertex sets.
In this example, k is set to 1 for simplicity. After the refinement,
A in DP-iso records edges between candidates. The final result
is shown in Figure 5(b).

3.1.2 Analysis
All the filtering methods prune C (u) by deriving some

constraints on candidates based onDefinition 2.1. The pseudo

subgraph isomorphism algorithm in the global refinement

of GraphQL can be simplified as the following observation.

Observation 3.2. Suppose that for each u ∈ V (q), C (u)
is complete. Su′ denotes N (v )

⋂
C (u ′) where v ∈ C (u) and

u ′ ∈ N (u). If the mapping (u,v ) exists in a match from q to
G , then v must satisfy (1) for each u ′ ∈ N (u), Su′ , ∅; and (2)
there exists a bag constructed by selecting a vertex from each
Su′ where u ′ ∈ N (u) such that the bag is a set, i.e., contains no
duplicate elements.
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Note that Observation 3.2 introduces condition (2) which is

not inObservation 3.1. If for anyu,u ′ ∈ V (q),C (u)
⋂
C (u ′) =

∅ (e.g., each query vertex has a distinct label), then Observa-

tion 3.2 is equivalent to Observation 3.1, because condition

(2) must be satisfied if condition (1) is met.

GraphQL refines C (u) along an order of vertices based

on Observation 3.2, whereas CFL, CECI and DP-iso based

on Observation 3.1. Ideally, we can repeat refining C (u) to
reach a steady state, in which for each v ∈ C (u) and u ∈
V (q), v satisfies the constraint in Observation 3.1 or 3.2,

but this process can be time consuming. Therefore, existing

algorithms perform a limited number of refinement iterations

to save the time cost. As the methods under study differ on

number of refinement iterations and prune C (u) based on

different subsets of N (u) at each step (e.g., CECI prunes

C (u) based on C (uc ), whereas DP-iso filters C (u) based on

C (u ′) where u ′ ∈ N δ
− (u) in the first refinement), we conduct

experiments to compare their practical performance.

3.2 Ordering Methods
QuickSI. QuickSI proposes an infrequent-edge first order-
ing method. It first converts q into a weighted graph qw , in
which w (u) = |{v ∈ V (G ) |L(v ) = L(u)}| and w (e (u,u ′)) =
|{e (v,v ′) ∈ E (G ) |L(v ) = L(u) ∧ L(v ′) = L(u ′)}| where
w (.) is the weight of a vertex or an edge. Next, QuickSI

selects the edge e∗ (u,u ′) = arдmine (u,u′)∈E (q )w (e (u,u ′)),
and adds u and u ′ into φ along the ascending order of their

weights. Without loss of generality, suppose that u is se-

lected as the first vertex and u ′ is the second. We set u ′.p as

u. After that, QuickSI iteratively picks the edge e∗ (u,u ′) =
arдmine (u,u′)∈E (q )∧u ∈φ∧u′<φ w (e (u,u ′)), sets u ′.p to u, and
adds u ′ into φ until φ contains all query vertices.

GraphQL.GraphQL proposes a left-deep join basedmethod,
which models the query as a left-deep join tree in which the

leaf nodes are candidate vertex sets. GraphQL first selects

u∗ = arдminu ∈V (q ) |C (u) | as the start vertex of φ. After that,
GraphQL iteratively selects u∗ = arдminu ∈N (φ )−φ |C (u) | as
the next vertex in φ.

CFL. CFL proposes a path-based ordering method, and
puts core vertices at the beginning of the matching order. It

first picks three core vertices u with min
| {v ∈V (G ) |L(u )=L(v ) } |

d (u ) ,

then selects the root vertex ur from the three query vertices

with minimum |C (u) | where C (u) is generated by NLF, and

finally generates a BFS tree qt of q rooted at ur . Let P de-

note all root-to-leaf paths P in qt . CFL designs a dynamic

programming method to build a weight arrayW in polyno-

mial time. This method estimates the number of paths in

A that are isomorphic to each path P ∈ P. Pu is the suffix

of P from u where u ∈ P , and c (P ) denote the estimated

number of paths in A that are isomorphic to P . CFL first

selects P∗ = arдminP ∈P
c (P )
|NT (P ) | where NT (P ) is the non-

tree edges adjacent to vertices in P , adds vertices in P∗ to φ
along their order in P∗, and removes P∗ from P. After that,

CFL iteratively picks P∗ = arдminP ∈P
c (Pu )
|C (u ) | where u is the

connection vertex of P to φ, adds vertices in P∗ −φ to φ, and
removes P∗ from P.
CECI. CECI uses the BFS traversal order of q as the match-

ing order. CECI first selects ur = arдminu ∈V (q )
|C (u ) |
d (u ) where

C (u) is generated by NLF, and then performs a BFS on q
started from ur to obtain the matching order.

DP-iso. DP-iso proposes an adaptive ordering method

that dynamically selects the next query vertex during the

enumeration. DP-iso decomposes the query vertices into the

set of degree-one vertices and the set V ′ of the remaining

vertices, and prioritizes the vertices in V ′. For the simplic-

ity of presentation, we focus on the vertices in V ′. DP-iso
first generates a BFS traversal order δ of q starting from

ur = arдminu ∈V (q )
|C (u ) |
d (u ) where C (u) is generated by LDF.

Next, DP-iso generates a collection of tree-like paths P in q
according to δ . Specifically, a path P starting from u ∈ V (q)
is called tree-like if all vertices u ′ in P except u satisfy that

N δ
+ (u

′) = 1. A tree-like path P ismaximal if there is no other
tree-like path that has P as a prefix. DP-iso builds a weight

array to estimate the number of embeddings in A that are

isomorphic to the maximal tree-like paths. When u ∈ V (q)
becomes extendable given δ andM during the enumeration,

DP-iso immediately computes LC (u,M ), and selects the next
query vertex to be mapped among all extendable vertices

based on the weight array and the local candidates.

RI. RI generates φ only based on the structure of q. RI first
selectsu∗ = arдmaxu ∈V (q ) d (u) as the start vertex ofφ. After
that, RI iteratively selects u∗ = arдmaxu ∈N (φ )−φ |N (u)

⋂
φ |

as the next vertex, i.e., RI prefers the vertex with more neigh-

bors in φ. When there are ties in themax function, RI breaks

ties by considering the following properties of u in order of:

(1) themaximumvalue of |{u ′ ∈ φ |∃u ′′ ∈ V (q)−φ,e (u ′,u ′′) ∈
E (q) ∧ e (u,u ′′) ∈ E (q)}|, i.e., the number of vertices in φ that

have a neighbor outside of φ and is adjacent with u; and (2)

the maximum value of |{u ′ ∈ N (u) − φ |∀u ′′ ∈ φ,e (u ′,u ′′) <
E (q)}|, i.e., the number of neighbors of u that are not in φ,
and not even adjacent with vertices in φ.
VF2++. VF2++ first picks the vertex u ∈ V (q) the label of

which is least frequently appeared inG but with the largest

degree as the root vertex ur . Next, VF2++ generates a BFS

tree qt of q rooted at ur . Let Vi (qt ) denote the vertices at

depth i in qt . VF2++ adds query vertices to φ depth-by-depth

from depth 0. Specifically, for the vertices in Vi (qt ), VF2++
iteratively selects u∗ = arдmaxu ∈Vi (qt )−φ |N (u)

⋂
φ | as the

next vertex in φ. VF2++ breaks ties by the properties of u in

order of: (1) the largest degree value; and (2) the minimum

value of |{v ∈ V (G ) |L(u) = L(v )}|.
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3.3 Enumeration Methods
These algorithms all adopt the recursive enumeration pro-

cedure in Algorithm 1 to find all matches, but use different

local candidate computation methods.

3.3.1 Overview
QuickSI, RI and VF2++. Algorithm 2 presents the Com-

puteLC function of QuickSI and RI. If the depth i = 1, line

1 returns C (u) generated by LDF. Otherwise, lines 3-8 loop

over the neighbors of the data vertex that is mapped to u .p
to obtain local candidates. Given v ∈ N (M[u .p]), VF2++ de-

signs extra filtering rules to determine whether v can be a

candidate of u in addition to the check at lines 4-8 in Algo-

rithm 2. Specifically, let L(N
φ
− (u)) denote {L(u

′) |u ′ ∈ N
φ
− (u)},

N
φ
− (u,l ) represents {u

′ ∈ N
φ
− (u) |L(u

′) = l }, and X (v,l ) is
{v ′ ∈ N (v ) |L(v ′) = l ∧v ′ < M }. VF2++ requires v to satisfy

that: ∀l ∈ L(N
φ
− (u)), |N

φ
− (u,l ) | ⩽ |X (v,l ) |. However, the ef-

fectiveness of the additional filtering rules is obtained at the

cost of extra computational and storage overhead.

Algorithm 2: ComputeLC of QuickSI and RI
1 if i = 1 then return {v ∈ V (G ) |LDF (v, u ) is true };
2 Φ← ∅;
3 foreach v ∈ N (M[u .p]) do
4 if LDF (v, u ) is true then
5 f laд ← true ;
6 foreach u′ ∈ N φ

+ (u ) and u′ , u .p do
7 if e (v,M[u′]) < E (G ) then f laд ← f alse , break;

8 if flag is true then Φ← Φ
⋃
{v };

9 return Φ;

GraphQL.Algorithm 3 describes theComputeLC function

of GraphQL. Because GraphQL does not maintain edges

between candidates, it has to loop over the entire C (u) to
compute local candidates.

Algorithm 3: ComputeLC of GraphQL
1 if i = 1 then return C (u );
2 Φ← ∅;
3 foreach v ∈ C (u ) do
4 f laд ← true ;
5 foreach u′ ∈ N φ

+ (u ) do
6 if e (v,M[u′]) < E (G ) then f laд ← f alse , break;

7 if flag is true then Φ← Φ
⋃
{v };

8 return Φ;

CFL.Givenu ∈ V (q) andv ∈ C (u .p), the neighbors ofv in

C (u) can be directly retrieved fromA. Algorithm 4 presents

the ComputeLC function of CFL.

Algorithm 4: ComputeLC of CFL
1 if i = 1 then return C (u );
2 if |N φ

+ (u ) | = 1 then return Au .p
u (M[u .p]);

3 Φ← ∅;

4 foreach v ∈ Au .p
u (M[u .p]) do

5 Same with Lines 5-8 in Algorithm 2;

6 return Φ;

Algorithm 5: ComputeLC of CECI and DP-iso
1 if i = 1 then return C (u );
2 if |N φ

+ (u ) | = 1 then return Au .p
u (M[u .p]);

3 return
⋂
u′∈Nφ

+ (u ) A
u′
u (M[u′]);

CECI and DP-iso. CECI and DP-iso maintain the edges

between candidates for all edges in E (q). Algorithm 5 illus-

trates the ComputeLC function of CECI and DP-iso. With the

assistance of A, Algorithm 5 performs set intersections to

compute the local candidates.

3.3.2 Analysis
Letα denote |N

φ
+ (u) |, β denote the cost of verifyingwhether

e (v,v ′) belongs to E (G ) and dG denote the average degree

of G. The cost of the LDF check is omitted, as the label

and degree of a vertex can be directly obtained. We storeG
as the compressed sparse row (CSR) where the neighbor set

of a vertex is a sorted array, and adopt the binary search
to check the existence of an edge. Hence, β can be esti-

mated byO (logdG ). We implement a hybrid set intersection

method: if the cardinalities of two sets are similar, we use

the merge-based method; otherwise, we adopt the Gallop-

ing algorithm [1]. The cost of the set intersection is propor-

tional to the cardinality of the smallest set. Algorithm 2 loops

over N (M[u .p]) where |N (M[u .p]) | can be estimated by dG .
Then, the cost of Algorithm 2 is O (dG ) when α = 1, while

O (dG×(α−1)×β ). The cost of Algorithm 3 isO ( |C (u) |×α×β ),
since GraphQL does not construct A to maintain edges be-

tween candidates. When α = 1, the cost of Algorithms

4 and 5 is O (1), because they can directly return results

based on the auxiliary data structures. When α > 1, the

cost of Algorithm 4 is O ( |N (M[u .p])
⋂
C (u) | × (α − 1) ×

β ). Algorithm 5 computes the local candidates based on

set intersections, the cost of which can be estimated by

O (minu′∈N φ
+ (u ) |N (M[u ′])

⋂
C (u) | × (α − 1)).

Through the analysis, we can see that constructing auxil-

iary data structures to maintain edges between candidates

can significantly improve the efficiency of the local candidate

computation, especially when there is only one backward

neighbor. Overall, Algorithm 5 is the most efficient.

3.4 Optimization Methods
Graph Compression. TurboIso [19] compressed the query

graph, and BoostIso [42] compressed the data graph. The au-

thors of CFL studied the effects of the two compression tech-

niques in detail, and found that (1) the data graph compres-

sion technique worked well only when the data graph was

very dense; (2) only a small number of query vertices could

be compressed by the query graph compression method; and

(3) CFL significantly outperformed the algorithms that adopt

the compression techniques [7]. Therefore, we do not study

the compression techniques in this paper.
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Figure 6: Running example of failing sets pruning.
Failing Sets Pruning. DP-iso proposed the failing sets

pruning method, which utilizes the information obtained

from the exploration of the search subtree rooted at a partial

resultM to rule out some invalid partial results, especially

the siblings of M in the search tree. We find that this op-

timization method cannot only work with DP-iso but also

other algorithms. Therefore, we further evaluate the effec-

tiveness of the failing sets pruning technique on different

algorithms in our experiments. The following is a running

example of the failing sets pruning technique.

Example 3.5. Given q in Figure 6(a) andG in Figure 1(b),
suppose the matching order φ is (u0,u1,u2,u3,u4). Figure 6(b)
visualizes a part of the search tree in which circles and edges
denote intermediate results and mappings between query ver-
tices to data vertices respectively. M is extended from M ′ by
mapping u2 to v10. The search tree is explored in a depth-first
search order. After the exploration of the subtree rooted atM ,
we know there is no match in the subtree, becausev0 is already
in M . Moreover, the failure is not relevant to u2, because it
does not involve in the conflict. Consequently, extending M ′

by mapping u2 to other candidates cannot lead to matches as
well. Then, we can skip the sibling ofM (i.e., the nodes in the
rectangle) in the search tree to accelerate the exploration.

3.5 Glasgow Algorithm
Glasgow [4] models subgraph matching as a constraint pro-
gramming problem in which vertices and edges in q corre-

spond to variables and constraints respectively. It recursively

maps query vertices to data vertices to find all results. Glas-

gow first obtains a candidate vertex set (i.e., domain) for
u ∈ V (q) based on the degrees of u ′ ∈ N (u), but does not
maintain edges between candidates. It does not generate φ
in advance of the enumeration, but determines which query

vertex will be mapped next during the search. Specifically, at

a recursive search call, it picks the query vertexu not mapped

but with the minimum number of candidates as the next. As

Glasgow is optimized for deciding whetherG contains q, it
prioritizes the candidate v with a large degree to map to

u first. When mapping u to v , Glasgow conducts inference

based on the new mapping to eliminate invalid candidates.

However, Glasgow maintain a number of status during the

search, which consumes a large amount of memory.

Table 3: Properties of real-world datasets.
Category Dataset Name |V | |E | |Σ | d

Biology
Yeast ye 3,112 12,519 71 8.0

Human hu 4,674 86,282 44 36.9

HPRD hp 9,460 34,998 307 7.4

Lexical WordNet wn 76,853 120,399 5 3.1

Citation US Patents up 3,774,768 16,518,947 20 8.8

Social Youtube yt 1,134,890 2,987,624 25 5.3

DBLP db 317,080 1,049,866 15 6.6

Web eu2005 eu 862,664 16,138,468 40 37.4

4 EXPERIMENTAL SETUP
Techniques under study.We studyQuickSI (QSI), GraphQL

(GQL), CFL, CECI, DP-iso (DP), RI, VF2++ (2PP) and Glasgow

(GLW) in our experiments.

Implementation.Weobtained the source code of QuickSI

and GraphQL from the authors of BoostIso [42] and the

source code of CFL [7], RI [8], VF2++ [23] and Glasgow [4]

from their original authors respectively. We carefully exam-

ined the obtained source code and re-implemented CFL, RI

and VF2++ within the framework in Algorithm 1. Currently,

the source code of CECI and DP-iso is not publicly available.

We contacted the authors of CECI [6] through email and

re-implemented a sequential version of CECI under their

detailed instructions. We re-implemented DP-iso based on

the original paper [17] and the author’s thesis [16]. All algo-

rithms were implemented in C++.

Experiment Environment. The code was complied by

g++ 4.9.2. We conducted experiments on a Linux machine

with two Intel Xeon E5-2670 v3 CPUs and 128GB RAM.

Data graphs. We used both real-world and synthetic

datasets to evaluate competing algorithms.

Real-world datasets. We selected eight real-world datasets

from five categories, including datasets used in previous

work [6, 17, 19, 21, 26, 33, 42, 45, 53, 59] as well as new

types of graphs such as the web network. Table 3 lists the

properties of the real-world datasets. Yeast, Human, HPRD

and WordNet contain labels. For the unlabeled datasets, we

followed the method used in previous work [7, 17], which

randomly chooses a label from a label set Σ and assigns the

label to the vertex. We tried different sizes of label sets and

picked those with which a reasonable number of queries

completed within time limit.

Synthetic datasets.We generated synthetic datasets with

the RMAT [12] model, which generates power-law graphs.

We set the four parameters of RMAT asa = 0.45,b = 0.22,c =
0.22 and d = 0.11. We randomly assigned distinct labels to

vertices. We varied |Σ| from 1 to 64, |V | from 0.1M (million)

to 64M and d from 4 to 32 respectively to find the "sane

default" such that we can demonstrate the capabilities of the

competing algorithms without breaking most of them. Based

on our experiments, the default configuration is |V | = 1M ,

d = 16 and |Σ| = 16. We varied |V |, |E | and |Σ| respectively
to examine the scalability of competing techniques.
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• Vary |V |: We generate 4 data graphs with the number

of vertices as 1M , 4M , 16M and 64M respectively.

• Vary d : We generate 4 data graphs with the degree as

8, 12, 16 and 20 respectively.

• Vary |Σ|: We generate 4 data graphs with the number

of distinct labels as 8, 12, 16 and 20 respectively.

Query graphs. We generated query graphs for each data

graph G by randomly extracting subgraphs from G to keep

consistent with previous research [4, 6, 7, 17, 19, 26, 42, 53].

Specifically, for each dataset, we generated nine query sets

each of which contains 200 connected query graphs with

the same number of vertices. We vary |V (q) | from 4 to 20

for Human and WordNet, but from 4 to 32 for other datasets,

because Human is very dense and most vertices in WordNet

have the same label, which makes them two very challeng-

ing. Except query graphs with |V (q) | = 4, we generated

four dense query sets (d (q) ⩾ 3) and four sparse query sets

(d (q) < 3). QiD and QiS denote the dense and sparse query

sets containing query graphs with i vertices respectively. To
generate q with specified configuration (e.g., |V (q) | = 8 and

d (q) ⩾ 3), we perform a random walk on G until getting the

specified number of vertices and extract the induced sub-

graph to check whether the density satisfies the requirement.

If so, we add it to the query set. Otherwise, we conduct a new

random walk. Table 4 lists the query sets for each data graph.

Due to space limit, we present the experiment results of Hu-

man and WordNet on Q20D and Q20S , and other datasets on

Q32D and Q32S as representatives by default.

Table 4: Datasets and query sets.
Dataset Query Set Default
Yeast, HPRD, US Patents, Youtube,

DBLP, eu2005

Q4 , Q8D ,Q16D ,Q24D ,Q32D ,

Q8S ,Q16S ,Q24S ,Q32S

Q32D ,

Q32S

Human, WordNet Q4 , Q8D ,Q12D ,Q16D ,Q20D ,

Q8S ,Q12S ,Q16S ,Q20S

Q20D ,

Q20S

Metrics. We measured the time in milliseconds (ms) to

process individual query in a query set, which consists of the

preprocessing time (i.e., the time spent on filtering vertices,

building auxiliary data structures and generating matching

orders) and the enumeration time (i.e., the time spent on

enumerating results). Furthermore, in order to compare the

filtering methods, we examined the number of candidate ver-
tices, which is

1

|V (q ) |
∑
u ∈V (q ) |C (u) |, and the memory cost on

the candidate vertices as well as the auxiliary data struc-

tures. Given q andG , there can be a large number of matches.

Following CFL and DP-iso, we terminated the query after

finding 10
5
matches to cover as much search space as time

allowed. We killed a query if it cannot complete within five

minutes (3 × 105 ms), so that our experiments can finish in

reasonable time. For the purpose of comparison, we recorded

the enumeration time of killed queries as five minutes. We

call a killed query an unsolved query. To evaluate an algo-

rithm on a query set, we report the average value for the
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Figure 7: Efficiency of filtering methods.

metrics such as the preprocessing time, the enumeration time

and the number of candidate vertices. For the enumeration

time, we report the standard deviation as well.

5 EXPERIMENT RESULTS
In this section, we evaluate the performance of competing

algorithms.

5.1 Evaluating Filtering Methods
In this subsection, we evaluate the filtering methods of GQL,

CFL, CECI and DP.

Preprocessing Time. Figure 7(a) presents the prepro-

cessing time on different real-world datasets. All algorithms

spend more time on large datasets such as up. Because GQL
has a higher time complexity, it generally runs slower than

CFL. Although CECI and DP have the same time complex-

ity as CFL, they spend more time than CFL, since (1) CECI

has to synchronize different copies of C (u); (2) DP performs

three iterations of refinement, whereas CFL only performs a

bottom-up refinement; and (3) CECI and DP preserve edges

between candidates for non-tree edges in qt . As shown in

Figure 7(b), the preprocessing time grows when |V (q) | in-
creases. In Figure 7(c), the difference between dense queries

and sparse queries on preprocessing time is small. Overall,

the absolute value of the preprocessing time is small.

Number of Candidate Vertices. Figure 8 compares the

pruning power of filtering methods. Besides competing al-

gorithms, we illustrate the results of two baseline methods:

(1) C (u) generated by LDF; and (2) C (u) in the steady state

(denoted by STEADY) based on Filtering Rule 3.1. The perfor-

mance of competing methods is close to LDF on wn, because
most vertices (more than 80%) in wn have the same label.

GQL outperforms other algorithms on wn because of its

stronger filtering rule. However, GQL does not dominate the

other algorithms on the other datasets, because (1) it refines

C (u) along a random order; and (2) these datasets have a

number of distinct labels. CECI performs worse than CFL
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Figure 8: Effect of filtering methods.

and DP, because the refinement of CECI prunes C (u) based
on uc in qt , whereas CFL and DP take more neighbors of

u into consideration. DP is slightly better than CFL, since

it conducts more refinement. Although CFL and DP only

perform a small number of refinements, their performance

is generally close to STEADY. In Figure 8(b), the number

of candidate vertices on Q4 is more than other query sets,

because query graphs in Q4 are sparse. |C (u) | varies slightly
with |V (q) | varied from 8 to 32. There are more candidates

on sparse queries than dense queries in Figure 8(c), because

query vertices in dense queries have more neighbors. Except

that GQL outperforms other methods when most of data ver-

tices have the same label, GQL, CFL and DP are competitive

with each other on other datasets.

5.2 Evaluating Enumeration Methods
We optimize the local candidate computation of QSI, GQL,

CFL and 2PP as follows: (1) maintain edges between candi-

dates for all edges in E (q); (2) adopt Algorithm 5 to compute

local candidates; and (3) remove the extra filtering rules

in 2PP. After that, we examine the average speedup of the

enumeration time achieved with the optimization for each al-

gorithm. We omit RI, because RI has the same local candidate

computation with QSI. We use C (u) generated by LDF as

the candidate vertex set of QSI and 2PP. Figures 9 shows the

speedup achieved with the optimization. The speedup on hp
is limited, because the enumeration time on hp is very short.

Although CFL has maintained edges between candidates

for tree-edges in qt , the optimization still achieves 1.3-4.8X

average speedup. GQL and 2PP achieve several orders of

magnitude speedup with the optimization. The experiment

results demonstrate the superiority of Algorithm 5, which

indicates the necessity of maintaining edges between candi-

dates for all edges in E (q). The speedup of 2PP shows that

the overhead of extra filtering rules exceeds the benefit.

We further examine whether we can improve the enu-

meration by adopting more recent set intersection method.
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Figure 9: Effect of the set intersection based local can-
didate computation on the enumeration time.
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Figure 10: Comparison of set intersection methods.

Specifically, we compare the hybrid method, denoted by Hy-
brid, on sorted integer arrays provided by EmptyHeaded [1]

and QFilter [18], which encodes neighbor sets in a compact

layout. Figure 10 presents the enumeration time of the opti-

mized GQL algorithm with Hybrid and QFilter respectively.
QFilter outperforms Hybrid on the dense graphs eu and hu,
because its compact layout allows each instruction to manip-

ulate more elements than Hybrid. However, the overhead of

the filter step as well as the compact layout makes QFilter
underperform Hybrid on the sparse graphs.

5.3 Evaluating Ordering Methods
In this subsection, we compare the ordering methods of QSI,

GQL, CFL, CECI, DP, RI and 2PP. In order to eliminate the

impact of different local candidate computation methods on

the performance, our experiments use the optimized version

of QSI, GQL, CFL, RI and 2PP (see Section 5.2). Because

C (u) generated by LDF have much more candidates than

that obtained by advanced filtering methods, we use C (u)
generated by the filtering method of GQL as the candidate

vertex set of QSI, RI and 2PP to make a fair comparison of

the ordering methods. Additionally, we disable the failing

sets pruning technique in DP-iso.

Enumeration Time. Figure 11(a) shows the enumera-

tion time on different datasets. The enumeration time on

hp is very short, because of the small number of candidates.

GQL and RI outperform the latest algorithms. GQL runs

faster than RI on hu, but slower on yt and wn. Figure 11(b)
presents the enumeration time on yt with |V (q) | varied. The
enumeration time of all methods increases with |V (q) |. CFL
performs much better on sparse queries than dense queries

in Figure 11(c). Figure 12 presents the standard deviation

(SD) of the enumeration time on yt. The large SD value in-

dicates that the enumeration time on different queries in

a query set can vary greatly. In order to gain more insight

into the performance of competing algorithms on individual
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Figure 11: Effect of ordering methods.

queries, we further report the percentage of short (t < 1

second), median (1 ⩽ t < 60 seconds), long (60 ⩽ t < 300

seconds) and unsolved queries respectively in Figure 13. The

competing algorithms answer each query in Q4, Q8D and

Q8S within 1 second. We omit the result. There are more

median/long/unsolved queries with the increase of |V (q) |. RI
completes more than 95% queries within 1 second on Q32D
and Q32S , which significantly outperforms other algorithms.
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Figure 12: Standard deviation of enumeration time.
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Figure 13: Percentage of queries on different cate-
gories based on enumeration time.

Number of Unsolved Queries. Table 5 lists the total

number of unsolved queries of competing methods on yt,
up, hu and wn. Each dataset has 1800 queries. If a query can-

not be completed within the time limit by any competing

algorithms, it is called as a fail-all query. wo/fs and w/fs rep-

resent the algorithms without/with the failing sets pruning

technique. The experiment setting in this subsection is wo/fs.

RI has fewer unsolved queries than the other algorithms

on yt, up and wn, which are sparse datasets, but has more

unsolved queries on hu. The gap between the number of

fail-all queries and that of each algorithm shows that each

algorithm can generate ineffective ordering on some queries

that can be solved by other algorithms.

Table 5: Number of unsolved queries.
Algorithm yt up hu wn

wo/fs w/fs wo/fs w/fs wo/fs w/fs wo/fs w/fs

QSI 14 0 26 9 12 6 69 20

GQL 11 0 23 8 10 2 17 3

CFL 95 6 24 12 16 8 191 139

CECI 161 5 39 7 40 9 547 351

DP 70 6 40 13 30 20 307 221

RI 2 0 18 8 23 9 0 0

2PP 49 3 49 17 12 7 270 220

Fail-All 0 0 7 3 2 0 0 0

Spectrum Analysis. We conduct the spectrum analysis
to study whether the matching orders generated by com-

peting algorithms can be further improved. Specifically, we

permutate V (q) to generate 1000 matching orders φ to eval-

uate the query. We pick a dense query and a sparse query

from the given dataset, which are denoted by qiD and qiS
respectively where i is the number of vertices. We set the

time limit for executing q on G with one generated order as

1 minute, and omit its result if it cannot complete within the

time limit. Figure 14 presents the spectrum analysis on the

selected queries, and the enumeration time of GQL and RI.

The blue point is the enumeration time with our generated

orders. As shown in the figure, we can find matching orders

that can significantly reduce the enumeration time.
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Figure 14: Spectrum analysis of ordering methods.

Table 6: Speedup with generated matching orders.
Algorithm Q32D on yt Q32S on yt

mean std max > 10 mean std max > 10

GQL 4613 25948 214285 48 12536 51078 300000 42

RI 1067 13272 187500 21 1441 19255 272727 3

With the same method, we analyze the performance of

GQL and RI for each query in Q32D and Q32S on yt. For
comparison, we also measure the performance of the other

algorithms under study as well as the performance of the

1000 randomly sampled matching orders. Then for each

query, we compute the speedup of the best performance

of all these matching orders over GQL and RI respectively.

Table 6 presents the maximum, the standard deviation, and

the mean of the speedups of the 200 queries. It also lists the

number of queries with a speedup of more than 10 times,

denoted as ">10". As shown in the table, both GQL and RI

can generate ineffective matching orders, with more than 40

queries on GQL and 3-21 queries on RI performing ten times

worst than the best matching order.
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Discussion. Given q and φ, qt is constructed as follows:

∀u ∈ φ[2 : |φ |],u .p ∈ N
φ
+ (u). The non-tree edges are denoted

by E (qt ). Given u ′ ∈ N
φ
+ (u) where u

′ , u .p, e (u ′,u) must

belong to E (qt ). We find that the non-tree edges tend to ap-

pear at the front of φ generated by GQL and RI, which can

terminate the invalid search path at an early stage based

on Algorithm 5. Prioritizing non-tree edges is more effec-

tive when datasets are sparse, because given two vertices,

they have fewer common neighbors. Therefore, RI performs

very well on sparse data graphs, as the ordering method of

RI picks the query vertices with more backward neighbors

at each step. However, the benefit of the strategy becomes

smaller when the data graph is very dense. Consequently,

RI performs poorly on dense graphs such as hu, because the
ordering method of RI does not consider any statistics of the

data graph. The ordering method of GQL is based on the

size of candidate vertex sets, which still works on very dense

graphs. The path-based ordering methods in CFL and DP

result in a number of unsolved queries, because they put low

priorities on the edges between paths when estimating cost.

Overall, GQL and RI outperform other methods. RI performs

well on sparse data graphs, but worse on dense ones. Nev-

ertheless, all the ordering methods can generate ineffective

matching orders.

5.4 Evaluating Optimization Methods
We first evaluate the effectiveness of the failing sets pruning

method on DP, which proposed the optimization, and then

examine its effect on other algorithms. The algorithms under

study have the same settings with that in Section 5.3. Figure

15 presents the effect of the failing sets pruning method on

the enumeration time, in which wo/fs and w/fs represent

the algorithm without/with the optimization respectively.

w/fs performs worse than wo/fs on Q4 and Q8D in Figure

15(a). In contrast, w/fs can speed up DP by up to one order of

magnitude on large queries. This is because there are more

invalid search paths for large queries that can be terminated

earlier by the optimization. In Figure 15(b), the optimization

can speed up each algorithm by orders of magnitude on yt.
As shown in Table 5, the optimization significantly reduces

the number of unsolved queries for each algorithm

5.5 Overall Performance
In this subsection, GQL and RI have the same settings with

that in Section 5.3. GQLfs and RIfs enable the failing set

pruning. We compare them with the original implementa-

tion of CECI, DP-iso, RI, VF2++ and Glasgow (GLW). CECI

and DP-iso are the latest algorithms in the database com-

munity, and the other three are efficient algorithms from

other communities. We denote them O-CECI, O-DP, O-RI

and O-2PP respectively to differentiate with the optimized
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Figure 15: Effect of failing sets pruning.
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Figure 16: Overall performance.
methods used in previous sections. Figure 16 presents the

overall performance of the competing algorithms. GLW only

works on hp, ye and hu, but runs out of memory on other

datasets. O-DP significantly outperforms O-RI, O-2PP and

O-CECI, while runs slower than GQLfs and RIfs because of

its ineffective ordering methods. GQLfs performs better than

RIfs on dense datasets (e.g., eu and hu), but worse on very

sparse datasets (e.g, yt and wn). The algorithms after our

optimization significantly outperform the state-of-the-art

algorithms from different communities.

5.6 Scalability Evaluation
In this subsection, we evaluate the scalability of GQLfs and

RIfs. We require them to find all results and examine the

effect of different properties of datasets on the search space

size. Figures 17 present the experiment results of Q16D on

synthetic datasets with d (G ), |Σ| and |V (G ) | varied respec-

tively. We estimated the number of results by computing the

average number of results in the solved queries. If there are

more than 50% unsolved queries, we discard the results of

the query time and the number of results. When the data

graph is very sparse or has many labels, queries take short

time, because there are fewer results. In contrast, there are a

lot of unsolved queries when the data graph is dense or |Σ| is
small. Compared with |V (G ) |, the algorithms are much more

sensitive to |Σ| and d (G ). The memory cost of the auxiliary

data structure is less than 500MB.

Figure 18 shows the experiment results of Q16D on the

friendster dataset with 124 million vertices and 1.8 billion

edges. We randomly assign 64 distinct labels to vertices and

vary the density by randomly selecting 40%, 60% and 80%

edges. We vary |Σ| from 64, 96, 128 to 160. As shown in the

figure, the query time is short when the dataset is sparse and

there are a number of labels, since the number of results sig-

nificantly decreases with the increase of |Σ| or the decrease
of density. We omit the results on the number of unsolved

queries and the number of results due to space limit.
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Figure 17: Scalability evaluation on synthetic datasets.
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Figure 18: Scalability evaluation on friendster dataset.

6 CONCLUSIONS
In this paper, we study the performance of eight subgraph

matching algorithms. We compare and analyze each indi-

vidual technique in selected algorithms, and conduct experi-

ments on both real-world and synthetic datasets to evaluate

their effectiveness. We summarize our findings as follows.

Comparisonwith results in previous research. 1. Our
experiment results confirm the observation in previous stud-

ies that (1) there is no algorithm that dominates other algo-

rithms on all queries, and the ordering methods can generate

some ineffective matching orders [33]; and (2) the perfor-

mance of different algorithms can vary greatly on a query,

and the run time of different queries in a query set can vary

greatly as well [26]. 2. The latest algorithms such as CFL,

CECI, and DP-iso state that they achieved great overall per-

formance improvement due to effective filteringmethods and

ordering methods. However, our experiment results show

that the filtering method of GraphQL is competitive with that

of latest algorithms, and that the ordering methods of the

latest algorithms perform worse than the earlier algorithms

such as QuickSI and GraphQL. In contrast to previous results,

we find that the latest algorithms outperform GraphQL in

the overall time, because they use auxiliary data structures to

maintain edges between candidates so that they significantly

improve the efficiency of the local candidate computation. 3.

we confirm that the preprocessing-enumeration algorithms

outperform the direct-enumeration algorithms such as RI

and VF2++. We attribute the performance improvement to

the following two reasons: (1) the candidate vertex sets gen-

erated by the filtering methods can provide more accurate

information for ordering methods; and (2) the auxiliary data

structure significantly improves the efficiency of the local

candidate computation.

Effectiveness of techniques in each category. 1. The
filtering methods of GraphQL, CFL and DP-iso perform bet-

ter than CECI in terms of the pruning power. As the filtering

method of GraphQL has a higher time complexity than CFL

and DP-iso, it runs slower. The pruning power of all filtering

methods is sensitive to the size of the label set. When most

of vertices have the same label, GraphQL performs better

than DP-iso and CFL because of its filtering rule. Overall,

the three methods are generally competitive with each other.

2. The ordering methods of GraphQL and RI are usually the

most effective among the competing ordering methods, be-

cause they tends to put the non-tree edges at the front of the

matching order. RI performs very well on sparse datasets, but

poorly on very dense ones, because it does not consider the

statistics of the data graph. The path-based ordering methods

in CFL and DP-iso can result in a large number of unsolved

queries, and the adaptive ordering does not dominate the

static ordering in our experiments. 3. The local candidate

computation method affects the enumeration performance

greatly, and the set intersection based method performs the

best among competing methods. Therefore, it is necessary

to build auxiliary data structures to maintain edges between

candidates. 4. The failing sets pruning technique can slow

down the performance on small queries, but can significantly

improve the performance on large queries and reduce the

number of unsolved queries.

Recommendation. 1. Use the candidate vertex compu-

tation method of GraphQL as default. If the preprocessing

time often dominates the query time, then switch to the

method of CFL or DP-iso. 2. Adopt the ordering methods of

GraphQL and RI on dense and sparse data graphs respec-

tively. 3. Use CECI/DP-iso-style auxiliary data structures to

maintain edges between candidates, and adopt the set in-

tersection based local candidates computation. If the data

graphs are very dense, then use QFilter as the set intersection

method. 4. Enable the failing sets pruning on large queries,

but disable it on small ones. By integrating the recommended

techniques in each category into Algorithm 1, we can obtain

an optimized method that outperforms the state-of-the-art

algorithms such as DP-iso.
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