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In-Memory Subgraph Matching

p Subgraph matching finds all subgraphs in a data graph 𝐺 that are identical 
to a query graph 𝑞.
Ø Both 𝑞 and 𝐺 are vertex-labeled.
Ø 𝑞 is connected and much smaller than 𝐺.
Ø 𝐺 resides in main memory.
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In-Memory Subgraph Matching

p Subgraph matching finds all subgraphs in a data graph 𝐺 that are identical 
to a query graph 𝑞.
Ø Both 𝑞 and 𝐺 are vertex-labeled.
Ø 𝑞 is connected and 𝐺 is much larger than 𝑞.
Ø 𝐺 resides in main memory.
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Applications

p Social network analysis.
p Protein interaction understanding.
p Graph database query.
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Figure source:
https://thenextweb.com/socialmedia/2013/11/24/facebook-grandparents-need-next-gen-social-network/
https://www.genengnews.com/insights/protein-protein-interactions-get-a-new-groove-on/
https://neo4j.com/blog/graph-theory-predictive-modeling/

https://thenextweb.com/socialmedia/2013/11/24/facebook-grandparents-need-next-gen-social-network/
https://www.genengnews.com/insights/protein-protein-interactions-get-a-new-groove-on/
https://neo4j.com/blog/graph-theory-predictive-modeling/


Representative Algorithms
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Communities Methodologies Algorithms

Database
Backtracking Search

QuickSI, GADDI, SPath, GraphQL, 
TurboIso, BoostIso, CFL, SGMatch, 

CECI, DP-iso, PGX, PSM, STwig

Multi-way Join EmptyHeaded, Graphflow, LogicBlox, 
PostgreSQL, MonetDB, Neo4j, GpSM

Artificial Intelligence Backtracking Search Ullmann, VF2, VF2++, VF3, LAD, 
Glasgow

Bioinformatics Backtracking Search RI, VF2+, Grapes
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Category of Backtracking-Based Algorithms 

p Direct-Enumeration: Directly explore 𝐺 to find all results.
Ø Example algorithms: QuickSI, RI and VF2++.
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Category of Backtracking-Based Algorithms 

p Direct-Enumeration: Directly explore 𝐺 to find all results.
Ø Example algorithms: QuickSI, RI and VF2++.

p Indexing-Enumeration: Construct indexes on 𝐺 and answer all queries with 
the assistance of indexes.
Ø Example algorithms: GADDI and SGMatch.

p Preprocessing-Enumeration: Generate candidate vertex sets per query at 
runtime and evaluate the query based on candidate vertex sets.
Ø Widely used in the latest algorithms proposed in the database community.
Ø Example algorithms: GraphQL, TurboISO, CFL, DP-iso and CECI.
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Observation

p Techniques in existing algorithms can be classified into several categories 
each of which have the same goal.
Ø Example: Methods filtering candidates, methods optimizing the matching order.
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Observation

p Techniques in existing algorithms can be classified into several categories 
each of which have the same goal.
Ø Example: Methods filtering candidates, methods optimizing the matching order.

p The methods are closely related and all affect the evaluation performance.
p Previous studies regard each algorithm as a black box.

Ø Hide effectiveness of individual techniques.
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Algorithm 1

Algorithm 2

Algorithm 3



Our Work

p Study individual techniques in the algorithms within a common framework.
Ø Compare and analyze individual techniques in existing algorithms.
Ø Conduct extensive experiments to evaluate the effectiveness of the techniques.
Ø Pinpoint techniques leading to the performance differences and make recommendation.
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Our Work

p Study individual techniques in the algorithms within a common framework.
Ø Compare and analyze individual techniques in existing algorithms.
Ø Conduct extensive experiments to evaluate the effectiveness of the techniques.
Ø Pinpoint techniques leading to the performance differences and make recommendation.

p Select seven algorithms from three different communities.
Ø GraphQL [SIGMOD’08]
Ø CFL  [SIGMOD’16]
Ø CECI  [SIGMOD’19]
Ø DP-iso  [SIGMOD’19]
Ø QuickSI [VLDB’08]
Ø RI  [BMC Bioinformatics’13]
Ø VF2++  [Discrete Applied Mathematics’18]
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The preprocessing-enumeration algorithms

The direct-enumeration algorithms



Common Framework
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Filtering 
Method

Ordering 
Method

Enumeration 
Method

Step 1

Step 2

Step 3

All Subgraphs of 
𝐺 Identical to 𝑞

Query Graph 𝑞
Data Graph 𝐺

Input Output
Subgraph Matching

p Filtering Method: Given 𝑞 and 𝐺, minimize candidate vertex sets 𝐶(𝑢) for each 𝑢 ∈ 𝑉(𝑞).
Ø 𝐶(𝑢): A set of data vertices 𝑣 ∈ 𝑉(𝐺) that can be mapped to 𝑢.

p Ordering Method: Optimize the matching order 𝜑 based on the statistics of candidate vertex sets.
Ø 𝜑: A sequence of query vertices 𝑉(𝑞).

p Enumeration Method: Iteratively extend partial results 𝑀 by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑.
Ø 𝑀: A dictionary storing mappings between query vertices to data vertices.

𝐶(𝑢)

𝐶(𝑢)

𝜑



Principles of Our Study

p Study the performance of the algorithms from four aspects.
p When comparing one component, fix the others for fair comparison.
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Filtering Method

p Basic Method: Filtering 𝐶(𝑢) based on the label 𝐿(𝑢) and degree 𝑑(𝑢) of 𝑢, 
i.e., 𝐶 𝑢 = {𝑣 ∈ 𝑉(𝐺)|𝐿 𝑣 = 𝐿(𝑢) ∧ 𝑑(𝑣) ≥ 𝑑(𝑢)}
Ø Take 𝑢! and 𝑢" as examples: 𝐶 𝑢! = 𝑣#, 𝑣", 𝑣$ , 𝐶 𝑢" = 𝑣%, 𝑣#&, 𝑣#!
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Filtering Method

p Filtering Rule: Given 𝑣 ∈ 𝐶(𝑢), if there exists 𝑢, ∈ 𝑁 𝑢 such that 𝑁 𝑣 ∩
𝐶 𝑢, = ∅, then 𝑣 can be removed from 𝐶(𝑢).

p Advanced Method: Filtering 𝐶(𝑢) with the rule along a sequence of 𝑢 ∈ 𝑉(𝑞).
Ø Example algorithms: GraphQL, CFL, CECI and DP-iso.
Ø Major differences: The filtering sequence and the number of rounds repeated.
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Filtering Method

p Build an auxiliary data structure 𝐴 to record edges between candidate 
vertex sets.
Ø Serve the cardinality estimation in the ordering method.
Ø Accelerate the subsequent enumeration method.

19𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoGraphQL



Ordering Method

p Adopt the greedy method that (1) selects a start vertex; and (2) iteratively 
adds unselected query vertices to 𝜑 according to the cost estimation based 
on 𝐶 and 𝐴.
Ø The major difference is the cost function.

Ø GraphQL: Select the vertex 𝑢 with the minimum |𝐶(𝑢)| at each step.
Ø CFL/DP-iso: Select the path of 𝑞 with the minimum number of embeddings in 𝐴 at each step.
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Enumeration Method

p Extend partial results by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑 with the 
assistance of 𝐴.
Ø GraphQL: Probe 𝐺 for all edge validation.
Ø CFL: Probe 𝐺 and 𝐴 for the non-tree and tree edge validation, respectively.
Ø DP-iso/CECI: Probe 𝐴 for all edge validation.
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Enumeration Method

p Extend partial results by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑 with the 
assistance of 𝐴.
Ø GraphQL: Probe 𝐺 for all edge validation.
Ø CFL: Probe 𝐺 and 𝐴 for the non-tree and tree edge validation, respectively.
Ø DP-iso/CECI: Probe 𝐴 for all edge validation.
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𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoQuery graph 𝑞 GraphQL

Recommendation: Use the DP-iso/CECI-style 
auxiliary data structure and enumeration method.



Optimization Method

p Failing set pruning: During the enumeration, utilize the information obtained 
from the explored part of the search tree to prune invalid partial results.
Ø Proposed by DP-iso.
Ø Other algorithms can adopt  the optimization as well.
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Experimental Setup

Ø All algorithms are implemented in C++ and run on a machine with 2.3GHz CPUs and 
128GB RAM.

Ø Real-world data graphs:

Ø Query sets:
Ø Query graphs are randomly extracted from the data graph.
Ø Each query set contains 200 connected graphs with the same number of vertices.
Ø 𝑄!" and 𝑄!# denote dense (𝑑(𝑞) ≥ 3) and sparse (𝑑 𝑞 < 3) query sets containing graphs with 𝑖 vertices.
Ø Each data graph has 1800 queries in total.
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p Metrics: Num of Candidate Vertices = !
|#|
∑$∈#

!
|&($)|

∑)∈&($) |𝐶(𝑢)| .

p Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.

Effectiveness of Filtering Methods
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Varying datasets on dense query sets.

LDF: Label and degree filter.
GQL: Filtering of GraphQL.
CFL: Filtering of CFL.
CECI: Filtering of CECI.
DP: Filtering of DP-iso.
STEADY: Given 𝑣 ∈ 𝐶 𝑢 , it satisfies 
that ∀𝑢! ∈ 𝑁 𝑢 ,𝑁(𝑣) ∩ 𝐶(𝑢′) ≠ ∅.



p Metrics: Num of Candidate Vertices = !
|#|
∑$∈#

!
|&($)|

∑)∈&($) |𝐶(𝑢)| .

p Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.
p Recommendation: Adopt the filtering method of GraphQL/CFL/DP-iso to prune candidate vertex sets.

Effectiveness of Filtering Methods
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Effectiveness of Ordering Methods

p Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt 
candidate vertex sets of GraphQL.

p Metrics: Enumeration Time = !
|#|
∑$∈# 𝑇(𝐴, 𝑞).

p Finding: GraphQL and RI are usually the most effective among competing methods.
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QSI: Ordering of QuickSI.
GQL: Ordering of GraphQL.
CFL: Ordering of CFL.
CECI: Ordering of CECI.
DP: Ordering of DP-iso.
RI: Ordering of RI.
2PP: Ordering of VF2++.
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Effectiveness of Ordering Methods

p Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt 
candidate vertex sets of GraphQL.

p Metrics: Enumeration Time = !
|#|
∑$∈# 𝑇(𝐴, 𝑞).

p Finding: GraphQL and RI are usually the most effective among competing methods.
p Recommendation: Adopt GraphQL and RI on dense and sparse data graphs respectively.
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Varying datasets on dense query sets.

QSI: Ordering of QuickSI.
GQL: Ordering of GraphQL.
CFL: Ordering of CFL.
CECI: Ordering of CECI.
DP: Ordering of DP-iso.
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Effectiveness of Failing Set Pruning

p Setup: Continue with the experiments on ordering methods and enable the failing set pruning.
p Metrics: Count the number of unsolved queries within 5 minutes.
p Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all  

competing algorithms can generate ineffective matching orders.

29Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing    
algorithms can complete within 5 minutes.



Effectiveness of Failing Set Pruning

p Setup: Continue with the experiments on ordering methods and enable the failing set pruning.
p Metrics: Count the number of unsolved queries within 5 minutes.
p Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all  

competing algorithms can generate ineffective matching orders.
p Recommendation: Enable failing set pruning for large queries.

30Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing    
algorithms can complete within 5 minutes.



Conclusion

p Compare and analyze individual techniques in seven algorithms from 
three communities within a common framework.

p Conduct extensive experiments to evaluate the effectiveness of each kind 
of methods respectively.

p Report our new findings and make the recommendation through 
experiments and analysis.

Checkout source code and datasets at: github.com/RapidsAtHKUST/SubgraphMatching

31

https://github.com/RapidsAtHKUST/SubgraphMatching

