
In-Memory Subgraph Matching:
An In-depth Study

Shixuan Sun and Qiong Luo
The Hong Kong University of Science and Technology

In-Memory Subgraph Matching

p Subgraph matching finds all subgraphs in a data graph 𝐺 that are identical
to a query graph 𝑞.
Ø Both 𝑞 and 𝐺 are vertex-labeled.
Ø 𝑞 is connected and much smaller than 𝐺.
Ø 𝐺 resides in main memory.

2

In-Memory Subgraph Matching

p Subgraph matching finds all subgraphs in a data graph 𝐺 that are identical
to a query graph 𝑞.
Ø Both 𝑞 and 𝐺 are vertex-labeled.
Ø 𝑞 is connected and 𝐺 is much larger than 𝑞.
Ø 𝐺 resides in main memory.

3

Applications

p Social network analysis.
p Protein interaction understanding.
p Graph database query.

4

Figure source:
https://thenextweb.com/socialmedia/2013/11/24/facebook-grandparents-need-next-gen-social-network/
https://www.genengnews.com/insights/protein-protein-interactions-get-a-new-groove-on/
https://neo4j.com/blog/graph-theory-predictive-modeling/

https://thenextweb.com/socialmedia/2013/11/24/facebook-grandparents-need-next-gen-social-network/
https://www.genengnews.com/insights/protein-protein-interactions-get-a-new-groove-on/
https://neo4j.com/blog/graph-theory-predictive-modeling/

Representative Algorithms

5

Communities Methodologies Algorithms

Database
Backtracking Search

QuickSI, GADDI, SPath, GraphQL,
TurboIso, BoostIso, CFL, SGMatch,

CECI, DP-iso, PGX, PSM, STwig

Multi-way Join EmptyHeaded, Graphflow, LogicBlox,
PostgreSQL, MonetDB, Neo4j, GpSM

Artificial Intelligence Backtracking Search Ullmann, VF2, VF2++, VF3, LAD,
Glasgow

Bioinformatics Backtracking Search RI, VF2+, Grapes

Representative Algorithms

6

Communities Methodologies Algorithms

Database
Backtracking Search

QuickSI, GADDI, SPath, GraphQL,
TurboIso, BoostIso, CFL, SGMatch,

CECI, DP-iso, PGX, PSM, STwig

Multi-way Join EmptyHeaded, Graphflow, LogicBlox,
PostgreSQL, MonetDB, Neo4j, GpSM

Artificial Intelligence Backtracking Search Ullmann, VF2, VF2++, VF3, LAD,
Glasgow

Bioinformatics Backtracking Search RI, VF2+, Grapes

Category of Backtracking-Based Algorithms

p Direct-Enumeration: Directly explore 𝐺 to find all results.
Ø Example algorithms: QuickSI, RI and VF2++.

7

Category of Backtracking-Based Algorithms

p Direct-Enumeration: Directly explore 𝐺 to find all results.
Ø Example algorithms: QuickSI, RI and VF2++.

p Indexing-Enumeration: Construct indexes on 𝐺 and answer all queries with
the assistance of indexes.
Ø Example algorithms: GADDI and SGMatch.

8

Category of Backtracking-Based Algorithms

p Direct-Enumeration: Directly explore 𝐺 to find all results.
Ø Example algorithms: QuickSI, RI and VF2++.

p Indexing-Enumeration: Construct indexes on 𝐺 and answer all queries with
the assistance of indexes.
Ø Example algorithms: GADDI and SGMatch.

p Preprocessing-Enumeration: Generate candidate vertex sets per query at
runtime and evaluate the query based on candidate vertex sets.
Ø Widely used in the latest algorithms proposed in the database community.
Ø Example algorithms: GraphQL, TurboISO, CFL, DP-iso and CECI.

9

Observation

p Techniques in existing algorithms can be classified into several categories
each of which have the same goal.
Ø Example: Methods filtering candidates, methods optimizing the matching order.

10

Observation

p Techniques in existing algorithms can be classified into several categories
each of which have the same goal.
Ø Example: Methods filtering candidates, methods optimizing the matching order.

p The methods are closely related and all affect the evaluation performance.

11

Observation

p Techniques in existing algorithms can be classified into several categories
each of which have the same goal.
Ø Example: Methods filtering candidates, methods optimizing the matching order.

p The methods are closely related and all affect the evaluation performance.
p Previous studies regard each algorithm as a black box.

Ø Hide effectiveness of individual techniques.

12

Algorithm 1

Algorithm 2

Algorithm 3

Our Work

p Study individual techniques in the algorithms within a common framework.
Ø Compare and analyze individual techniques in existing algorithms.
Ø Conduct extensive experiments to evaluate the effectiveness of the techniques.
Ø Pinpoint techniques leading to the performance differences and make recommendation.

13

Our Work

p Study individual techniques in the algorithms within a common framework.
Ø Compare and analyze individual techniques in existing algorithms.
Ø Conduct extensive experiments to evaluate the effectiveness of the techniques.
Ø Pinpoint techniques leading to the performance differences and make recommendation.

p Select seven algorithms from three different communities.
Ø GraphQL [SIGMOD’08]
Ø CFL [SIGMOD’16]
Ø CECI [SIGMOD’19]
Ø DP-iso [SIGMOD’19]
Ø QuickSI [VLDB’08]
Ø RI [BMC Bioinformatics’13]
Ø VF2++ [Discrete Applied Mathematics’18]

14

The preprocessing-enumeration algorithms

The direct-enumeration algorithms

Common Framework

15

Filtering
Method

Ordering
Method

Enumeration
Method

Step 1

Step 2

Step 3

All Subgraphs of
𝐺 Identical to 𝑞

Query Graph 𝑞
Data Graph 𝐺

Input Output
Subgraph Matching

p Filtering Method: Given 𝑞 and 𝐺, minimize candidate vertex sets 𝐶(𝑢) for each 𝑢 ∈ 𝑉(𝑞).
Ø 𝐶(𝑢): A set of data vertices 𝑣 ∈ 𝑉(𝐺) that can be mapped to 𝑢.

p Ordering Method: Optimize the matching order 𝜑 based on the statistics of candidate vertex sets.
Ø 𝜑: A sequence of query vertices 𝑉(𝑞).

p Enumeration Method: Iteratively extend partial results 𝑀 by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑.
Ø 𝑀: A dictionary storing mappings between query vertices to data vertices.

𝐶(𝑢)

𝐶(𝑢)

𝜑

Principles of Our Study

p Study the performance of the algorithms from four aspects.
p When comparing one component, fix the others for fair comparison.

16

Filtering
Method

Ordering
Method

Enumeration
Method

Filtering
Method

Ordering
Method

Enumeration
Method

Filtering
Method

Ordering
Method

Enumeration
Method

Other
Optimization

Other
Optimization

Algorithm 1

Algorithm 2

Algorithm 3

Filtering Method

p Basic Method: Filtering 𝐶(𝑢) based on the label 𝐿(𝑢) and degree 𝑑(𝑢) of 𝑢,
i.e., 𝐶 𝑢 = {𝑣 ∈ 𝑉(𝐺)|𝐿 𝑣 = 𝐿(𝑢) ∧ 𝑑(𝑣) ≥ 𝑑(𝑢)}
Ø Take 𝑢! and 𝑢" as examples: 𝐶 𝑢! = 𝑣#, 𝑣", 𝑣$, 𝐶 𝑢" = 𝑣%, 𝑣#&, 𝑣#!

17

Filtering Method

p Filtering Rule: Given 𝑣 ∈ 𝐶(𝑢), if there exists 𝑢, ∈ 𝑁 𝑢 such that 𝑁 𝑣 ∩
𝐶 𝑢, = ∅, then 𝑣 can be removed from 𝐶(𝑢).

p Advanced Method: Filtering 𝐶(𝑢) with the rule along a sequence of 𝑢 ∈ 𝑉(𝑞).
Ø Example algorithms: GraphQL, CFL, CECI and DP-iso.
Ø Major differences: The filtering sequence and the number of rounds repeated.

18

Filtering Method

p Build an auxiliary data structure 𝐴 to record edges between candidate
vertex sets.
Ø Serve the cardinality estimation in the ordering method.
Ø Accelerate the subsequent enumeration method.

19𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoGraphQL

Ordering Method

p Adopt the greedy method that (1) selects a start vertex; and (2) iteratively
adds unselected query vertices to 𝜑 according to the cost estimation based
on 𝐶 and 𝐴.
Ø The major difference is the cost function.

Ø GraphQL: Select the vertex 𝑢 with the minimum |𝐶(𝑢)| at each step.
Ø CFL/DP-iso: Select the path of 𝑞 with the minimum number of embeddings in 𝐴 at each step.

20

Enumeration Method

p Extend partial results by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑 with the
assistance of 𝐴.
Ø GraphQL: Probe 𝐺 for all edge validation.
Ø CFL: Probe 𝐺 and 𝐴 for the non-tree and tree edge validation, respectively.
Ø DP-iso/CECI: Probe 𝐴 for all edge validation.

21

𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoQuery graph 𝑞 GraphQL

Enumeration Method

p Extend partial results by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑 with the
assistance of 𝐴.
Ø GraphQL: Probe 𝐺 for all edge validation.
Ø CFL: Probe 𝐺 and 𝐴 for the non-tree and tree edge validation, respectively.
Ø DP-iso/CECI: Probe 𝐴 for all edge validation.

22

𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoQuery graph 𝑞 GraphQL

Recommendation: Use the DP-iso/CECI-style
auxiliary data structure and enumeration method.

Optimization Method

p Failing set pruning: During the enumeration, utilize the information obtained
from the explored part of the search tree to prune invalid partial results.
Ø Proposed by DP-iso.
Ø Other algorithms can adopt the optimization as well.

23

Experimental Setup

Ø All algorithms are implemented in C++ and run on a machine with 2.3GHz CPUs and
128GB RAM.

Ø Real-world data graphs:

Ø Query sets:
Ø Query graphs are randomly extracted from the data graph.
Ø Each query set contains 200 connected graphs with the same number of vertices.
Ø 𝑄!" and 𝑄!# denote dense (𝑑(𝑞) ≥ 3) and sparse (𝑑 𝑞 < 3) query sets containing graphs with 𝑖 vertices.
Ø Each data graph has 1800 queries in total.

24

p Metrics: Num of Candidate Vertices = !
|#|
∑$∈#

!
|&($)|

∑)∈&($) |𝐶(𝑢)| .

p Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.

Effectiveness of Filtering Methods

25
Varying datasets on dense query sets.

LDF: Label and degree filter.
GQL: Filtering of GraphQL.
CFL: Filtering of CFL.
CECI: Filtering of CECI.
DP: Filtering of DP-iso.
STEADY: Given 𝑣 ∈ 𝐶 𝑢 , it satisfies
that ∀𝑢! ∈ 𝑁 𝑢 ,𝑁(𝑣) ∩ 𝐶(𝑢′) ≠ ∅.

p Metrics: Num of Candidate Vertices = !
|#|
∑$∈#

!
|&($)|

∑)∈&($) |𝐶(𝑢)| .

p Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.
p Recommendation: Adopt the filtering method of GraphQL/CFL/DP-iso to prune candidate vertex sets.

Effectiveness of Filtering Methods

26
Varying datasets on dense query sets.

LDF: Label and degree filter.
GQL: Filtering of GraphQL.
CFL: Filtering of CFL.
CECI: Filtering of CECI.
DP: Filtering of DP-iso.
STEADY: Given 𝑣 ∈ 𝐶 𝑢 , it satisfies
that ∀𝑢! ∈ 𝑁 𝑢 ,𝑁(𝑣) ∩ 𝐶(𝑢′) ≠ ∅.

Effectiveness of Ordering Methods

p Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt
candidate vertex sets of GraphQL.

p Metrics: Enumeration Time = !
|#|
∑$∈# 𝑇(𝐴, 𝑞).

p Finding: GraphQL and RI are usually the most effective among competing methods.

27
Varying datasets on dense query sets.

QSI: Ordering of QuickSI.
GQL: Ordering of GraphQL.
CFL: Ordering of CFL.
CECI: Ordering of CECI.
DP: Ordering of DP-iso.
RI: Ordering of RI.
2PP: Ordering of VF2++.

GraphQL

RI

Effectiveness of Ordering Methods

p Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt
candidate vertex sets of GraphQL.

p Metrics: Enumeration Time = !
|#|
∑$∈# 𝑇(𝐴, 𝑞).

p Finding: GraphQL and RI are usually the most effective among competing methods.
p Recommendation: Adopt GraphQL and RI on dense and sparse data graphs respectively.

28
Varying datasets on dense query sets.

QSI: Ordering of QuickSI.
GQL: Ordering of GraphQL.
CFL: Ordering of CFL.
CECI: Ordering of CECI.
DP: Ordering of DP-iso.
RI: Ordering of RI.
2PP: Ordering of VF2++.

GraphQL

RI

Effectiveness of Failing Set Pruning

p Setup: Continue with the experiments on ordering methods and enable the failing set pruning.
p Metrics: Count the number of unsolved queries within 5 minutes.
p Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all

competing algorithms can generate ineffective matching orders.

29Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing
algorithms can complete within 5 minutes.

Effectiveness of Failing Set Pruning

p Setup: Continue with the experiments on ordering methods and enable the failing set pruning.
p Metrics: Count the number of unsolved queries within 5 minutes.
p Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all

competing algorithms can generate ineffective matching orders.
p Recommendation: Enable failing set pruning for large queries.

30Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing
algorithms can complete within 5 minutes.

Conclusion

p Compare and analyze individual techniques in seven algorithms from
three communities within a common framework.

p Conduct extensive experiments to evaluate the effectiveness of each kind
of methods respectively.

p Report our new findings and make the recommendation through
experiments and analysis.

Checkout source code and datasets at: github.com/RapidsAtHKUST/SubgraphMatching

31

https://github.com/RapidsAtHKUST/SubgraphMatching

