B FEERKKE
r'- THE HONG KONG

WJ UNIVERSITY OF SCIENCE

AND TECHNOLOGY

q Rapids @ HKUST
Y

In-Memory Subgraph Matching:
An In-depth Study

Shixuan Sun and Qiong Luo
The Hong Kong University of Science and Technology

In-Memory Subgraph Matching

O finds all subgraphs in a data graph G that are identical
to a query graph gq.
» Both g and G are vertex-labeled.
» q is connected and much smaller than G.
» G resides in main memory.

(a) Query graph q. (b) Data graph G.

In-Memory Subgraph Matching

O finds all subgraphs in a data graph G that are identical
to a query graph gq.
» Both g and G are vertex-labeled.
» q is connected and G is much larger than q.
» G resides in main memory.

(a) Query graph q. (b) Data graph G.

Applications

O Social network analysis.
O Protein interaction understanding.
O Graph database query.

Figure source:

NFATC3
A

ool

username:

id: 8
content: ...

id: 10
content: ...

username:
Davina

OL ATdIY

username:
Charlie

id: 6
content: ...

https://thenextweb.com/socialmedia/2013/11/24/facebook-grandparents-need-next-gen-social-network/

https://www.genengnews.com/insights/protein-protein-interactions-get-a-new-groove-on/

https://neo4j.com/blog/graph-theory-predictive-modeling/

https://thenextweb.com/socialmedia/2013/11/24/facebook-grandparents-need-next-gen-social-network/
https://www.genengnews.com/insights/protein-protein-interactions-get-a-new-groove-on/
https://neo4j.com/blog/graph-theory-predictive-modeling/

Representative Algorithms

QuickSI, GADDI, SPath, GraphQL,
Backtracking Search Turbolso, Boostlso, CFL, SGMatch,
Database CECI, DP-iso, PGX, PSM, STwig

EmptyHeaded, Graphflow, LogicBlox,
PostgreSQL, MonetDB, Neo4j, GpSM

Multi-way Join

Ullmann, VF2, VF2++, VF3, LAD,

Artificial Intelligence Backtracking Search
Glasgow

Bioinformatics Backtracking Search RI, VF2+, Grapes

Representative Algorithms

Methodologies Algorithms

QuickSI, GADDI, SPath, GraphQL,
Backtracking Search Turbolso, Boostlso, CFL, SGMatch,
Database CECI, DP-iso, PGX, PSM, STwig

EmptyHeaded, Graphflow, LogicBlox,
PostgreSQL, MonetDB, Neo4j, GpSM

Ullmann, VF2, VF2++, VF3, LAD,
Glasgow

Multi-way Join

Artificial Intelligence Backtracking Search

Bioinformatics Backtracking Search RIl, VF2+, Grapes

Category of Backtracking-Based Algorithms

O . Directly explore G to find all results.
» Example algorithms: QuickSI, Rl and VF2++.

Category of Backtracking-Based Algorithms

O Direct-Enumeration: Directly explore G to find all results.
» Example algorithms: QuickSI, Rl and VF2++.

O . Construct indexes on ¢ and answer all queries with
the assistance of indexes.
» Example algorithms: GADDI and SGMatch.

Category of Backtracking-Based Algorithms

O Direct-Enumeration: Directly explore G to find all results.
» Example algorithms: QuickSI, Rl and VF2++.

O Indexing-Enumeration: Construct indexes on G and answer all queries with
the assistance of indexes.
» Example algorithms: GADDI and SGMatch.

O . Generate candidate vertex sets per query at
runtime and evaluate the query based on candidate vertex sets.
» Widely used in the latest algorithms proposed in the database community.
» Example algorithms: GraphQL, TurbolSO, CFL, DP-iso and CECI.

Observation

O Techniques in existing algorithms can be classified into several categories
each of which have the same goal.

» Example: Methods filtering candidates, methods optimizing the matching order.

Observation

O Techniques in existing algorithms can be classified into several categories
each of which have the same goal.

» Example: Methods filtering candidates, methods optimizing the matching order.
O The methods are closely related and all affect the evaluation performance.

Observation

O Techniques in existing algorithms can be classified into several categories
each of which have the same goal.
» Example: Methods filtering candidates, methods optimizing the matching order.

O The methods are closely related and all affect the evaluation performance.

O Previous studies regard each algorithm as a black box.
» Hide effectiveness of individual techniques.
.

Algorithm 1

Algorithm 2

m— mm e mm o oEm e oEm e

_ Algorithm 3 ,;

. 12

Our Work

O Study techniques in the algorithms within a framework.
» Compare and analyze individual techniques in existing algorithms.
» Conduct extensive experiments to evaluate the effectiveness of the techniques.
» Pinpoint techniques leading to the performance differences and make recommendation.

Our Work

O Study techniques in the algorithms within a framework.
» Compare and analyze individual techniques in existing algorithms.
» Conduct extensive experiments to evaluate the effectiveness of the techniques.
» Pinpoint techniques leading to the performance differences and make recommendation.

O Select algorithms from different communities.
» GraphQL [SIGMOD’08]
» CFL [SIGMOD’16]
» CECI [SIGMOD’19]
» DP-iso [SIGMOD’19]
» QuickSI [VLDB’08]
» Rl [BMC Bioinformatics’13]
» VF2++ [Discrete Applied Mathematics’18]

Common Framework

@
Step 2
Query Graph q Filtering Enumeration All Subgraphs of
Data Graph G Method C(w) Method G Identical to q
Input Step 1 Step 3 Output

Subgraph Matching

O Filtering Method: Given g and G, minimize candidate vertex sets C(u) for each u € V(q).
> C(u): A set of data vertices v € VV(G) that can be mapped to wu.

O Ordering Method: Optimize the matching order ¢ based on the statistics of candidate vertex sets.
> @: A sequence of query vertices IV (q).

O Enumeration Method: Iteratively extend partial results M by mapping u € V(q) to v € C(u) along ¢.
» M: A dictionary storing mappings between query vertices to data vertices. 15

Principles of Our Study

O Study the performance of the algorithms from four aspects.

O When comparing one component, fix the others for fair comparison.

Algorithm 1

Algorithm 2

Algorithm 3

Filtering
Method

1 Enumeration §

Filtering
Method

1 Enumeration §

Filtering ,

! Method

:
i Enumeration
I Method :

|
I
I
I
|’.
I
I
|
I

Other
Optimization

" - F S O . - \d

" emm s s o omm o ==

16

Filtering Method

O Basic Method: Filtering C(u) based on the label L(u) and degree d(u) of u,
e, C(u) ={veV(@)|Lv) =Lw)Ad() = d(u)}

> Take u, and uz as examples: C(u,) = {vy, v3,vs}, C(u3) = {vg, V19, V12}

(a) Query graph q. (b) Data graph G. T

Filtering Method

O Filtering Rule: Given v € C(u), if there exists u’ € N(u) such that N(v) n
C(u") = @, then v can be removed from C (u).

O Advanced Method: Filtering C(u) with the rule along a sequence of u € V(q).

» Example algorithms: GraphQL, CFL, CECI and DP-iso.
» Major differences: The filtering sequence and the number of rounds repeated.

(a) Query graph gq. (b) Data graph G.

Filtering Method

O Build an A to record edges between candidate
vertex sets.
> Serve the cardinality estimation in the ordering method.
» Accelerate the subsequent enumeration method.

(a) Query graph g.
T Tt TTTTTr T e e m T 1
1 v
€ wg)[o] | € ()] Cloll
1 ! C v
=] = NN "R
o 1N o A
C 1
E (u,) : C(uy) . C(uy)
1 u
E C(u3) : V10V12C(u3) C(u3)Mol12 2 C(u3)v10v12
1

GraphQL A of CFL A of CECI A of DP-iso

Ordering Method

O Adopt the that (1) selects a start vertex; and (2) iteratively
adds unselected query vertices to ¢ according to the cost estimation based
on C and A.

» The major difference is the :
» GraphQL: Select the vertex u with the minimum |C (u)| at each step.
» CFL/DP-iso: Select the path of g with the minimum number of embeddings in A at each step.

Enumeration Method

O Extend partial results by mapping u € V(q) to v € C(u) along ¢ with the
assistance of A.
» GraphQL: Probe ¢ for all edge validation.

» CFL: Probe ¢ and A for the and edge validation, respectively.
» DP-iso/CECI: Probe A for all edge validation.

C (ug)[Vo) |
\ - »
\ |
! C(u,)

: /
! £
1C (uy) Vz‘@——‘@EECWI) va(vaf = = = = Av3)vs

1
Vio["12|C (usy) E V10]V12|C (uy) C(uz)

Query graph g GraphQL A of CFL A of CECI A of DP-iso

21

Enumeration Method

O Extend partial results by mapping u € V(q) to v € C(u) along ¢ with the
assistance of A.

» GraphQL: Probe ¢ for all edge validation.
» CFL: Probe - and A for the non-iree and tree edge validation, respectively.

¢ (ug)["o) i
\ 1 '
\ |
! C(u,)

' /
! L
cap[ala- - s canalia} - - - - ()
: C(uy) C(uy)
Vio]V12|C (uy) E V10f"12|C (usy) C(uz)
Query graph g GraphQL A of CFL A of CECI A of DP-iso

Recommendation: Use the DP-iso/CECI-style
auxiliary data structure and enumeration method. 99

Optimization Method

O Failing set pruning: During the enumeration, utilize the information obtained
from the explored part of the search tree to prune invalid partial results.
» Proposed by DP-iso.
» Other algorithms can adopt the optimization as well.

Experimental Setup

» All algorithms are implemented in C++ and run on a machine with 2.3GHz CPUs and
128GB RAM.

| Category | Dataset | Name | |V]| | |E| | IZ] | d |
» Real-world data graphs: Yeast ye 3112 12519 | 71 | 80
Biology Human hu 4,674 86,282 44 | 369
HPRD hp 9,460 34,998 | 307 | 74
| Lexical | WordNet | wn | 76853 | 120399 | 5 | 3.1 |
| Citation | USPatents | up | 3,774,768 | 16,518,947 | 20 | 8.3 |
Social Youtube yt 1,134,890 | 2,987,624 | 25 [53
DBLP db 317,080 | 1,049,866 | 15 | 6.6
| Web | eu2005 | eu | 862664 | 16,138,468 | 40 | 37.4 |

» Query sets:
» Query graphs are randomly extracted from the data graph.
» Each query set contains 200 connected graphs with the same number of vertices.

> Q;p and Q;; denote dense (d(q) = 3) and sparse (d(q) < 3) query sets containing graphs with i vertices.

» Each data graph has 1800 queries in total.

| Dataset | Query Set | Default |
Yeast, HPRD, US Patents, Youtube, | Q4, Qsp, Q16D> Q240> Q32D, | Q32D
DBLP, eu2005 Qss, Q165> Qaas, Q325 QOs2s
Human, WordNet Q4, Qsp, Q120> Q160> Q200> | Q20D
Qss, Q12s, Q16s, Q208 Qa0s

24

Num of Candidate Vertices

e
(@) o o
o - N

Effectiveness of Filtering Methods

O Metrics: Num of Candidate Vertices = ﬁZqEQ ﬁzuewq) |C(w)|.

O Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.

Varying datasets on dense query sets.

yt up

h'u)

wn

1 LDF: Label and degree filter.

GQL: Filtering of GraphQL.

i CFL: Filtering of CFL.

CECI: Filtering of CECI.

i DP: Filtering of DP-iso.
1 STEADY: Given v € C(u), it satisfies
that Vu' € N(u), N(v) n C(u") # Q.

25

o
o

o T e T = R = N
o O O
(9]

Num of Candidate Vertices
e
o (@] (@]

o - N

Effectiveness of Filtering Methods

O Metrics: Num of Candidate Vertices = ﬁZqEQ ﬁzuewq) |C(w)|.

O Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.
O Recommendation: Adopt the filtering method of GraphQL/CFL/DP-iso to prune candidate vertex sets.

. 1 LDF: Label and degree filter.

= GQL: Filtering of GraphQL.

= L4 { CFL: Filtering of CFL.

- + 40 | CECI: Filtering of CECI.

=R “b4N5 1 DP: Filtering of DP-iso.

I 7 E —r40] STEADY: Given v € C(u), it satisfies

S

w
T

=T | thatvu' € NW),N(v) n C(u) # ®.

yt up hu wn

Varying datasets on dense query sets.
26

Enumeration Time (ms)

10’
10°

10°}

103}
10%}
10}

1071

Effectiveness of Ordering Methods

O Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt

candidate vertex sets of GraphQL.

O Metrics: Enumeration Time = ﬁZqEQ T(A, q).

O Finding: GraphQL and RI are usually the most effective among competing methods.

1 QSI: Ordering of QuickSl.
1 GQL: Ordering of GraphQL.

-1 1 CFL: Ordering of CFL.

CECI: Ordering of CECI.
DP: Ordering of DP-iso.

1 RI: Ordering of RI.

./ 1 2PP: Ordering of VF2++.

| £QSI ©IGQL E=ACFL [ICECI EZIDP (Rl [E5i2PP GraphQL
— i~ ~o N 51
A BENTE N BT e RN
. o] ‘ k ﬁa *ﬂ:’ HH | [o] \:4_
hp db eu yt up hu N w/n,'
. . L7
Varying datasets on dense query sets. v

27

Enumeration Time (ms)

Effectiveness of Ordering Methods

O Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt
candidate vertex sets of GraphQL.

O Metrics: Enumeration Time = ﬁZqEQ T(A,q).
O Finding: GraphQL and RI are usually the most effective among competing methods.

O Recommendation: Adopt GraphQL and Rl on dense and sparse data graphs respectively.

107 - - -
108! E=2QSI £GQL E=dCFL [ICECI

RI' £2i2PP GraphQL 1 QSI: Ordering of QuickSl.
”~ 1 GQL: Ordering of GraphQL.
1 CFL: Ordering of CFL.
» 1] CECI: Ordering of CECI.
- .11 DP:Ordering of DP-iso.
= t./1 RI: Ordering of RI.
./ 1 2PP: Ordering of VF2++.

Y = , ~

- 1N\ P

ik i 1NEH ™ 1] , b3 AN o

g . o . P x I q . v R: I p

e N « im NI o =8 NNz B
I o . R* . P *g . q W I

<
[

4 +
ALH
YN

[
[T
[T

[
[
N
[
[

—U U U T
o o _©O o U]

[
l
{
[T
[

[
I
l
(111
[

db”] eu” yt” 7 up) hu' \

Varying datasets on dense query sets. v
RI 28

Effectiveness of Failing Set Pruning

O Setup: Continue with the experiments on ordering methods and enable the failing set pruning.
O Metrics: Count the number of within 5 minutes.

O Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all
competing algorithms can generate ineffective matching orders.

Algorithm Y up Wi
il wo/fs w/fs | wo/fs w/fs wo/fs wo/fs w/fs wo/fs: Enumeration without the failing set pruning.
T w/fs: Enumeration with the failing set pruning.
QI ' 14 0 1§ 26 0 12 69 20 Fail-ALL: Number of queries tha?no czmpet?ng
GQL | 11 O § 23 8 H 10 17 3 algorithms can complete within 5 minutes.
CFL | 95 6 I 24 12 1 16 191 | 139
CECI i 161 5 W 39 7 H 40 547 351
DP | 70 6 || 40 13 | 30 307 | 221
RI [2 0 [18 8 I 23 0 0
2PP 49 | 3)| 49 17 12 270 | 220
Fail-All 0 0 7 3 1 2 0 0

Number of unsolved queries among 1800 queries for each data graph. 29

Effectiveness of Failing Set Pruning

O Setup: Continue with the experiments on ordering methods and enable the failing set pruning.

O Metrics: Count the number of unsolved queries within 5 minutes.

O Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all
competing algorithms can generate ineffective matching orders.

O Recommendation: Enable failing set pruning for large queries.

: yt up hu wn

Algorithm | wo/fs | w/fs | wo/fs | w/fs || wo/fs | w/fs || wo/fs | w/fs
QSI (14 0 I 26 9 I 12 6 69 20
GQL il 11 0 § 23 8 [10 2 17 3
CFL | 95 6 I 24 12 Il 16 8 191 139
CECI || 161 5 39 7 [40 9 547 | 351
DP | 70 6 || 40 13)l 30 20 307 | 221

RI [2 0 [18 8 I 23 9 0 0
2PP 49 | 3)| 49 17 12 7 270 | 220
Fail-All 0 0 7 3 [E] 2 0 0 0

Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing
algorithms can complete within 5 minutes.

30

Conclusion

O Compare and analyze individual techniques in seven algorithms from
three communities within a common framework.

O Conduct extensive experiments to evaluate the effectiveness of each kind
of methods respectively.

O Report our new findings and make the recommendation through
experiments and analysis.

https://github.com/RapidsAtHKUST/SubgraphMatching

