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ABSTRACT
We propose to accelerate an important but time-consuming opera-
tion in online graph analytics, which is the counting of common
neighbors for each pair of adjacent vertices (u,v), or edge (u,v),
on three modern processors of different architectures. We study
two representative algorithms for this problem: (1) a merge-based
pivot-skip algorithm (MPS) that intersects the two sets of neighbor
vertices of each edge (u,v) to obtain the count; and (2) a bitmap-
based algorithm (BMP), which dynamically constructs a bitmap
index on the neighbor set of each vertex u, and for each neighbor
v of u, looks up v’s neighbors in u’s bitmap. We parallelize and
optimize both algorithms on a multicore CPU, an Intel Xeon Phi
Knights Landing processor (KNL), and an NVIDIA GPU. Our experi-
ments show that (1) Both the CPU and the GPU favor BMP whereas
MPS wins on the KNL; (2) Across all datasets, the best performer is
either MPS on the KNL or BMP on the GPU; and (3) Our optimized
algorithms can complete the operation within tens of seconds on
billion-edge Twitter graphs, enabling online analytics.
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1 INTRODUCTION
Graphs model real-world relationships such as social networks
and the world wide web. Given an undirected graph G = (V , E),
graph analytical systems often utilize the common neighbor count
|N (u)∩N (v)| between adjacent vertices, where (u,v) ∈ E and N (u)
is the neighbor set of u, for graph structural clustering and simi-
larity queries [8, 9, 18, 19, 21, 25–27]. The results can be applied
to advertising and epidemiology. For example, online platforms
maintain graphs of user co-purchasing relations and analyze the
data on the fly to recommend products of potential interest to the
user while the user is shopping. Such applications require fast per-
formance on big graphs; however, counting the common neighbors
for all adjacent vertices, or all edges, is a time-consuming operation.
Therefore, we study how to accelerate this operation on modern
processors.

Given two vertices u,v ∈ V , we can compute the common neigh-
bor count cnt[(u,v)] by intersecting the neighbor sets of u and v .
We consider two set intersection algorithms: (1) MPS: a merge-
based algorithm on two sorted arrays [14, 15] with optimizations of
finding pivots and skipping elements in the presence of skew; and
(2) BMP: an index-based algorithm which builds a bitmap on one
array, and loops over the other array to look up matches through
the index.

Modern processors provide new opportunities for improving the
efficiency of our algorithms. The AVX2 instruction sets on modern
CPUs enable simultaneous execution of eight 32-bit integer opera-
tions with a single instruction; an Intel Knights Landing Processor
(KNL) has 64 cores, two vector processing units (VPUs) per core, and
an on-package 16GB high-bandwidth multi-channel DRAM (MC-
DRAM); the Nvidia GPU has tens of Streamming Multiprocessors
(SMs), on which hundreds of thread blocks can be executed simul-
taneously. Therefore, there exists great potential for performance
improvement, if we parallelize both MPS and BMP and optimize
them to fully utilize the computation and memory resources on
these three processors.

We parallelize both algorithms using a general OpenMP skeleton
on the KNL and the CPU. The main idea is to group a fixed number
of neighbor set intersections as a task and dynamically schedule
these tasks. On the GPU, due to its fine-grained parallelism and
hardware-managed scheduling, we treat the neighbor set intersec-
tions of a single vertex as a task and map it to a thread block using
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CUDA (Compute Unified Device Architecture). Specifically, we par-
allelize MPS by launching two merge kernels respectively for the
set intersections with and without the data skew, and parallelize
BMP by launching a single kernel, given the differences in skew
handling of these two algorithms.

We propose optimization techniques for the two algorithms. For
MPS, we adopt the vectorization technique to utilize the vector
execution units on the CPU and KNL; For BMP, we propose a
range filtering technique to utilize the sparsity of matches in the set
intersection and fit the auxiliary bitmap filter into the CPU cache
or the GPU shared memory. Additionally, we perform hardware-
specific optimizations on the KNL and GPU. On the KNL, we study
the effects of utilizing MCDRAM in the cache and flat modes. On
the GPU, we utilize the unified memory feature, and propose (1)
CPU-GPU co-processing to overlap independent computations on
the CPU and GPU; (2) multi-pass processing on the GPU to preserve
the data locality andminimize page swaps caused by the on-demand
load of the unified memory; and (3) tuning the number of warps
per thread block.

We conduct extensive experiments on real-world big graphs to
evaluate the effectiveness of individual techniques for MPS and
BMP. Subsequently, we compare the two optimized parallel algo-
rithms on each processor. We further analyze the performance
differences among the best algorithms on three processors, and
report our findings. We find that: (1) MPS works best on the KNL,
because of 128 VPUs and the high-bandwidth memory MCDRAM;
(2) CPU favors BMP, because its L3 cache reduces the memory
access latency; (3) GPU also favors BMP, due to the warp-level
parallelism; and (4) the best performance is achieved by either MPS
on the KNL or BMP on the GPU, and the worst by MPS on the GPU,
due to the match between algorithms, hardware and datasets. We
show that our optimized algorithms complete the all-edge common
neighbor counting in 21.5 seconds on the 680 million edge twitter
graph (BMP on the GPU) , and 34 seconds on the 1.8 billion edge
friendster graph (MPS on the KNL) .

2 BACKGROUND AND RELATEDWORK
In this section, we give the problem statement of all-edge common
neighbor counting, discuss related work on set intersection and
exact triangle counting algorithms.

2.1 Preliminaries
In this paper, we focus on an undirected graph G = (V , E), where
V is a set of vertices and E is a set of edges. Given a vertex u ∈ V ,
N (u) is the set of neighbors of u, and du denotes the degree of u
(i.e., du = |N (u)|). ID(u) is the ID of vertex u. All vertex IDs inG are
unique 32-bit unsigned integers in [0, |V |). N+(u) is the neighbors
of u whose IDs are greater than ID(u).

Common Neighbor Count. Given an undirected graph G =
(V , E) and vertices u,v ∈ V , the common neighbors of u and v are
the set of vertices {w |w ∈ N (u)∧w ∈ N (v)}. The common neighbor
count of u and v , denoted as cnt[(u,v)], is the number of their com-
mon neighbors. The common neighbor count of a pair of adjacent
vertices is an important local coefficient for graph analytics, for
example, the graph structural clustering and the similarity queries

of vertex pairs [8, 9, 18, 19, 21, 25–27]. The problem addressed in
this paper is as follows.

Problem Statement. Given a graph G = (V , E), the all-edge
common neighbor counting is to compute the common neighbor
count cnt[(u,v)] for each edge (u,v) ∈ E.

Degree-Descending Graph Ordering. In BMP, to lower the
time complexity of each set intersection than O(dv ), we add a
degree-descending reordering of vertices, to remap the vertex IDs in
an edge list. The reordering takes the time complexityO(|V | log |V |+
|E |) - O(|V | log |V |) for sorting and O(|E |) for vertex re-mapping
for all edges. It took less than 3 seconds on the billion-edge twitter
graphs in our experimental setting. The degree-descending reorder-
ing ensures ∀u ,v ∈V (u < v → du > dv ), which enables us to
construct bitmaps for the larger degree vertex and loop over the
neighbor set of the smaller degree vertex in each intersection.

Storage Format. Given a graph G = (V , E), whose original
storage format is a list of edges, we preprocess G to convert it to
the compressed sparse row (CSR) format, which is widely used in
graph algorithms [8, 9, 22, 25]. A CSR consists of an offset array
and a neighbor array, denoted as o f f and dst respectively. The
neighbor array stores v , the destination of each edge (u,v) ∈ E.
For brevity, we denote an edge offset in the CSR as e(u,v), where
dst[e(u,v)] = v . The range [o f f [u],o f f [u + 1]) is the range of
offsets of u’s neighbors, which we call an offset range, i.e., e(u,v) ∈
[o f f [u],o f f [u + 1]). The neighbor set of vertex u is denoted by
dst[o f f [u] : o f f [u + 1]), which is sorted in the ascending order.
Without causing confusion, we use u for both vertex and vertex id,
(u,v) ∈ E for an edge, e(u,v) for the edge offset of (u,v), cnt[e(u,v)]
for the common neighbor count of two adjacent vertices u and v .

2.2 Related Work
Given an edge (u,v) ∈ E, we can compute the common neighbor
count cnt[e(u,v)] with a set intersection between N (u) and N (v),
i.e., cnt[e(u,v)] = |N (u)∩N (v)|. Also, counting the common neigh-
bors for a single edge is essentially counting the number of triangles
based on the edge.

2.2.1 Set Intersection. The set intersection algorithms can be cat-
egorized into three types: (1) merge-based ones on sorted arrays,
(2) bitmap-based ones, and (3) index-based nested loop. The merge-
based algorithms require both sets to be represented in sorted arrays.
They scan the two arrays and compare the elements to find matches.
The data parallelism can be exploited for the algorithms via the
vectorization technique [14, 15, 24]. When the sizes of the two sets
are significantly different, search algorithms [2–4, 10, 11, 15, 24]
are introduced to improve the efficiency of merge. Specifically, the
merge is done by iteratively fixing a pivot in one array and skipping
in the other array quickly to find a possible match via an efficient
search algorithm. Recently, a sparse bitmap is proposed to repre-
sent a neighbor set, which consists of offset and bit-state arrays
[1, 13, 16]. An intersection of two sparse bitmaps is done bymerging
and filtering on the offset arrays and intersecting the underlying
bit-states associated with the offsets when an offset match occurs.
However, to make bit-states compact, graph reordering is required,
which is time-consuming and is performed offline. In comparison,
index-based methods invest both time and memory resources to
build auxiliary data structures such as hash tables and skip lists
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Algorithm 1:MPS
Input: a graphG = (V , E) and a tunable threshold t
Output: the all-edge comon neighbor counts cnt

1 foreach (u , v) ∈ E and u < v do
2 if du /dv ≤ t and dv /du ≤ t then
3 cnt [e(u , v)] ← IntersectM (N (u), N (v))
4 else cnt [e(u , v)] ← IntersectPS (N (u), N (v))
5 cnt [e(v , u)] ← cnt [e(u , v)]
6 Procedure IntersectM (A1, A2)
7 c ← 0, of f1 ← 0, of f2 ← 0, end1 ← |A1 |, end2 ← |A2 |
8 while of f1 < end1 and of f2 < end2 do
9 if A1[of f1] < A2[of f2] then of f1 ← of f1 + 1

10 else if A1[of f1] > A2[of f2] then of f2 ← of f2 + 1
11 else of f1 ← of f1 + 1, of f2 ← of f2 + 1, c ← c + 1
12 return c
13 Procedure IntersectPS (A1, A2)
14 c ← 0, of f1 ← 0, of f2 ← 0, end1 ← |A1 |, end2 ← |A2 |
15 while true do
16 of f1 ← LowerBound (A1 + of f1, A1 + end1, A2[of f2])
17 if of f1 ≥ end1 then return c
18 of f2 ← LowerBound (A2 + of f2, A2 + end2, A1[of f1])
19 if of f2 ≥ end2 then return c
20 if A1[of f1] == A2[of f2] then
21 of f1 ← of f1 + 1, of f2 ← of f2 + 1,c ← c + 1
22 if of f1 ≥ end1 or of f2 ≥ end2 then return c

[5, 12, 20]. Once the indices are built, an indexed nested loop join
is performed to iterate over one set and look up the index to find
matches in the other set.

We extract representative elements from existing set intersection
algorithms, especially those on graph analytics, and design the two
algorithms MPS and BMP. Our focus is to study the parallelization
and optimization of these algorithms on modern processors.

2.2.2 Exact Triangle Counting. If we sum up the all-edge common
neighbor counts in a graph and divide the sum by six, we get
the total number of triangles in the graph. However, the triangle
counting differs from our problem in two aspects. Firstly, with an
order constraint u < v < w and the symmetric breaking technique,
for an adjacent vertex pair (u,v), only an intersection of N+(u)
and N+(v) is required in the triangle counting [23]; whereas our
problem requires to compute the intersection of full neighbor sets
N (u) and N (v). Secondly, the triangle counting does not require
to store edge associative values; whereas our problem requires to
store the |E | counts. Merge-based and hash-index-based algorithms
are designed for the triangle counting on multi-core CPUs [23].

Our work differs from the state-of-the-art parallel triangle count-
ing work on multi-core CPUs [23] on three aspects: (1) handling
degree-skew cases for real-world graphs in our merge-based algo-
rithm; (2) dynamically building an index to save the memory cost
of auxiliary structures in our index-based algorithm; and (3) paral-
lelizing, optimizing and evaluating both algorithms on three hetero-
geneous modern processors.

3 METHODOLOGY
In this section, we describe the design of MPS and BMP, both of
which utilize a symmetric assignment technique. Since common
neighbor counts |N (u) ∩ N (v)| and |N (v) ∩ N (u)| are identical,
we can reduce the workload by computing the intersections only
for the edges (u,v) satisfying u < v and symmetrically assigning
cnt[e(u,v)] to cnt[e(v,u)]. The edge offset e(v,u) can be found via
a binary search of the value u on the sorted array of N (v).

1 2 3

20

off_u

off_v

end

end

(a) initial state (c) load, shuffle, and compare-equal

1 21 2
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and move mask

0 0 0 1

128bit-vector registers
block of 
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1 2 3
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all-pair 
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end

end match count

Figure 1: An example of VB

3.1 MPS
MPS (Algorithm 1) iterates through all the edges (u,v) with a con-
dition of u < v , and utilizes the symmetric assignment technique
to avoid unnecessary intersections (Line 5). Merging two sorted
arrays and counting the matches are basic components of MPS.
We describe a vectorized block-wise merge (VB), suitable for no
degree-skew cases; and a pivot-skip-based merge (PS), suitable for
degree-skewed cases.

Vectorized Block-wise Merge (VB). To exploit the data par-
allelism of merge, a vectorized block-wise merge [14] (Figure 1)
was proposed, which conducts all-pair comparisons for the count-
ing and advances a block of elements each time. There are three
steps of the block-wise all-pair comparisons. Firstly, sorted integer
blocks are loaded and shuffled within the vector register. Secondly,
all elements are compared pair-wise simultaneously, the results of
which are stored in masks. Thirdly, the counts of matches from the
masks are added to a vector register that stores the intermediate
match counts. After the block-wise all-pair comparisons, the last
element in each block is compared, and the offset of the block with
the smaller last element is advanced at a block-size step. The final
match count result can be computed from the sum of integers in
the vector register of match counts.

Pivot-Skip-based Merge (PS). On twitter graphs, VB does not
work well for degree-skewed cases. In order to skip quickly for a
possible match, we design a PS. The key idea of PS is to fix a pivot
in one of the two sorted arrays, and then in the other array skip the
offset directly to the lower bound of the sorted elements not less
than the pivot value, to find a possible match. Each merge (Lines
13-22) consists of iterative computations in three steps: (1) given
the pivotA2[o f f2], find the lower bound in theA1 not less than the
pivot to advance o f f1 for a possible match; (2) similarly advance
o f f2 on the other array; and (3) increment the match count and
advance both offsets by one, if a match is found.

To implement an efficient lower bound algorithm, we apply two
techniques: vectorized linear search [9] and galloping-search [2–
4, 11, 15]. First, we utilize the vectorized instruction set to conduct
a linear search of the target pivot value. If the linear search fails to
find the lower bound, we continue with a galloping-search to skip
the offset at exponentially increasing sizes 24, 25, ..., 2i , 2i+1, until
we find an offset pointing to a value greater than the pivot. After
these exponential skips, a binary-search for the pivot value in the
relative offset range [2i , 2i+1) finally locates the lower bound.

Time Complexity of PS. Let ds and dl denote the degrees of
vertices v and u (ds ≤ dl ), s[i] denotes the skip size in the u’s
neighbor set. In each skip step, the galloping skips and the binary
search both take the O(loд(s[i])) time complexity, and there are
at most 2 · ds iterations to advance the offset of v’s neighbor set
to the end. We sum up the cost of each skip step up, and get the
time complexityO(Σi ∈[0,2ds ) log(s[i])+ds ). In practice, the average
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Algorithm 2: BMP
Input: a graphG = (V , E)
Output: the all-edge comon neighbor counts cnt

1 foreach u ∈ [0, |V |) do
2 B← a bitmap of cardinality |V |
3 foreach v ∈ N (u) do
4 Set v ’s bit in bitmap B
5 foreach v ∈ N (u) and u < v do
6 cnt [e(u , v)] ← IntersectBMP (B, N (v))
7 cnt [e(v , u)] ← cnt [e(u , v)]
8 foreach v ∈ N (u) do
9 Flip v ’s bit in bitmap B

10 Procedure IntersectBMP (B, A)
11 c ← 0
12 foreachw ∈ A do
13 if w ’s bit is a 1-bit in bitmap B then c ← c + 1
14 return c

logarithms of skip size is close to a constant. Thus, we can rewrite
the time complexity as O(c · ds ).

Combining VB and PS.When the degrees of two vertices are
similar, PS may advance offsets only one element at a time to find
the lower bound of the pivot, whereas VB can advance at a block
size. To take advantage of both merge algorithms, we combine these
two merge algorithms. Specifically, we adopt PS for two sets of high
cardinality skew (i.e., du >> dv or du << dv ) and VB otherwise.
We set a tunable threshold for the degree-skew ratio (Lines 2-4).

3.2 BMP
BMP (Algorithm 2) dynamically constructs a bitmap index of N (u)
for a vertex u, and reuses the index to do indexed nested loop joins
for every N (u) ∩ N (v), ∀v ∈ N (u). In the vertex computation of u
(Lines 1-9), a bitmap index of N (u) is constructed and reused for
bitmap-array intersections (Lines 10-14).

Different from building auxiliary structures offline [23], we uti-
lize the all-edge computation feature to dynamically construct and
reuse our bitmap index, and amortize the construction and clear-
ing costs. The motivation of adopting a bitmap instead of other
structures such as skipping-based, tree-based, hash-based index
structures [5, 12, 20] is to support put and lookup operations at the
actual constant time cost via simple bit operations.

Specifically, we introduce a bitmap of cardinality |V |, which is
used for the existence checking of a vertexw in theu’s neighbor set
N (u) via a peek at the corresponding bit (Value 1 indicates the exis-
tence, and 0 non-existence). A bitmap is dynamically constructed
and cleared for each vertex computation. The count |N (u) ∩ N (v)|
can be computed in a bitmap-array intersection with the time com-
plexity O(dv ) by looping over all v’s neighbors w ∈ N (v) and
counting whenw is also in the bitmap index of N (u).

In each vertex computation of u, there are three steps: (1) getting
the bitmap B, and setting the bits representing its neighbors N (u);
(2) iterating through each ofu’s neighborv satisfying the constraint
u < v , computing cnt[e(u,v)] and symmetrically assigning its value
to the cnt[e(v,u)]; and (3) clearing the bitmap B by flipping the 1-
bits set by u’s neighbors.

Index Cost. The dynamic bitmap construction and clearing cost
takes an amortized constant time for each set intersection. This is
because each of u’s neighbor v can account for its own bit’s set
and flip operations in the bitmap of N (u), which are used for the
computation of cnt[e(u,v)] and cnt[e(v,u)]. The memory cost of a
bitmap is |V |/8 bytes. In parallel execution, the number of bitmaps

Algorithm 3: Parallel MPS and BMP using OpenMP
Input: a graphG = (V , E) in a CSR = (of f and dst arrays) and a tunable task size |T |
Output: the all-edge common neighbor counts cnt

1 #pragma omp parallel for schedule(dynamic, the task size |T |)
2 foreach e(u , v) ∈ [0, |E |) do
3 u ← F indSrc(of f , e(u , v))
4 if u < v then
5 cnt [e(u , v)] ← ComputeCntMPS (u , v)
6 cnt [e(v , u)] ← cnt [e(u , v)]
7 Procedure F indSrc(of f , e(u , v))
8 ut ls ← a static thread-local integer, initially ut ls = 0
9 if e(u , v) ≥ of f [ut ls + 1] then
10 ut ls ← LowerBound (of f [ut ls + 1], of f [ |V |], e(u , v))
11 if of f [ut ls ] > e(u , v) then
12 while dutls −1 == 0 do ut ls ← ut ls − 1
13 ut ls ← ut ls − 1
14 else while dutls == 0 do ut ls ← ut ls + 1
15 return ut ls
16 ProcedureComputeCntMPS (u , v)
17 return IntersectMPS (N (u), N (v))
18 ProcedureComputeCntBMP (u , v)
19 put ls ← a static thread-local integer, initially put ls = −1
20 Bt ls ← a static thread-local bitmap, initially Bt ls = all-zero bits
21 if u ! = put ls then
22 if put ls ! = −1 then
23 Bt ls ← ClearBitmap(Bt ls , N (put ls ))
24 Bt ls ← ConstructBitmap(Bt ls , N (u)), put ls ← u
25 return IntersectBMP (Bt ls , N (v))

will be the same as the context, which is a few gigabytes in our
experiments.

Time Complexity. Given a degree-descending reordered graph
and the computation constraint u < v (Line 5) during the iterations
of u’s neighbors, the time complexity of each bitmap-array inter-
section is O(min(du ,dv )). This is because we have du > dv given
u < v , and each bitmap-array intersection on edge (u,v) is in the
time complexity O(dv ) for the loop of N (v).

4 PARALLELIZATION
To exploit the hardware features of the three modern processors, we
propose parallel algorithms for bothMPS and BMP on each platform.
In our problem, there are |E | set intersections; and the sizes of most
neighbor sets are often small. Thus, the parallelism in each set
intersection is limited, so we group multiple set intersections into
a single task. We define two types of tasks: (1) a fine-grained task,
which takes a single-edge neighbor set intersection as the unit; and
(2) a coarse-grained task, which takes du neighbor set intersections
of a vertex u as the unit.

We useT to denote a set of units in a task. On the one hand, con-
structing large tasks (large |T |) makes the task queue maintenance
cost negligible. On the other hand, smaller tasks achieve a better
load balance than that of large tasks. Therefore, a trade-off of the
overhead and load balance should be made. For a fine-grained task,
it is feasible to find a fixed |T |, and group |T | edge set intersections
into a task and dynamically schedule |E |/|T | tasks for the load bal-
ance. However, for a coarse-grained task, since each unit is a vertex
computation of du intersections, and du may differ significantly
in real world graphs; we choose to fix a small number of units to
achieve the load balance (e.g. |T | = 1).

4.1 Parallelization on the CPU and KNL
On the CPU and KNL, in the consideration of both load balance and
negligible dynamic scheduling overhead, we adopt the fine-grained
tasks with a fixed number of units per task. We parallelize both
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MPS and BMP with a general skeleton (Algorithm 3). We show a
parallel MPS and discuss how to extend it for a parallel BMP.

Specifically, a task is represented in a pair of edge offsets that
defines the processing range of edges. For the all-edge common
neighbor counting, we separate the edge offset range [0, |E |) into
|E |/|T | sub-ranges with an OpenMP parallel for directive. Then, we
dynamically schedule these tasks. In each task, we iterate through
all the destination vertices v in the edge offset range of the current
task. For each vertex v , we proceed in the following three steps
(Lines 3-6): (1) compute the source vertex u for the edge pointed by
the offset e(u,v); (2) compute the common neighbor count |N (u) ∩
N (v)| for the edge (u,v) if the condition u < v holds; and (3)
symmetrically assign cnt[e(u,v)] to cnt[e(v,u)].

The main challenge in Algorithm 3 is how to efficiently find the
source vertex u in the first step without materializing the source
vertex array. A naive way to findu is that for each edge offset e(u,v),
we find the lower bound of edge offsets not less than the target
offset e(u,v). In other words, we find the first vertex u satisfying
e(u,v) ∈ [o f f [u],o f f [u + 1]). If that vertex u has at least one
neighbor, then we find the correct u, otherwise we move on to
find the first occurrence of vertex u with a non-zero degree. To
improve the efficiency, we further amortize the cost of the source
vertex finding. We record the previously processed source vertex
u in a task with a static thread-local variable, and perform the
time-consuming lower bound operations only when the current
processed edge offset e(u,v) is out of stashed vertex u’s neighbor
set offset range (e(u,v) ≥ o f f [u + 1]). We show the details in the
procedure FindSrc(o f f , e(u,v)) (Lines 7-15).

To support a parallel BMP, we only need to replace the com-
mon neighbor counting procedure ComputeCntMPS(u,v) (Line 5)
with the ComputeCntBMP(u,v). The essential differences of these
two procedures are the static thread-local bitmap clearing and con-
struction operations. Specifically, we update a thread-local bitmap
for the N (u) indexing when the source vertex of processed edges
changes. We use a static thread-local integer put ls to record the last
processed vertex u, and update the bitmap when put ls differs from
the current u. We show the details in a procedure (Lines 18-25). For
a vertex u with a large degree, all the threads assigned to a task on
u will construct a bitmap index for N (u). Nevertheless, each thread
only constructs an index for a vertex once. As such, the amortized
cost of bitmap clearing and construction is not large, compared to
that of bitmap-array intersections.

4.2 Parallelization on the GPU
On the GPU, benefiting from the low overhead of the hardware
thread block scheduler, we adopt the coarse-grained tasks and map
the common neighbor counting for a vertex u into a thread block,
which simplifies the GPU programming.

The capacity of global memory on the GPU is limited (12 GB)
compared to that of DRAM on the CPU and KNL (100+ GB). For
billion-edge graphs, it is infeasible to directly allocate all the data
structures on the global memory. To deal with the challenge, we
utilize the unified memory feature available on Pascal GPUs, which
enables us to have a single declared memory area addressable by
both CPU and GPU. Memory pages will be swapped by the CUDA
runtime automatically on the page faults.

Algorithm 4: Parallel MPS and BMP using CUDA
Input: a graphG = (V , E) in a CSR = (of f and dst arrays)
Output: the all-edge common neighbor counts cnt

1 LaunchCUDAKernels(), AssiдnOf f setsOnCPU ()
2 SynchronizeDevice()
3 foreach (u , v) ∈ E in parallel do
4 if u > v then cnt [e(u , v)] ← cnt [cnt [e(u , v)]]
5 Procedure AssiдnOf f setsOnCPU ()
6 foreach (u , v) ∈ E in parallel do
7 if u < v then cnt [e(v , u)] ← e(u , v)

Algorithm 5: Parallel MPS kernels
Input: a graphG = (V , E) in a CSR = (of f and dst arrays) and a tunable threshold t
Output: the common neighbor counts cnt [e(u , v)] of all the adjacent vertex pairs

(u , v) satisfying u < v
/* |V | thread blocks, 2D threads per block (blockDim.x: the warp size 32,

blockDim.y: the number of warps per block) */

1 LaunchMKernel (of f , dst , cnt , t )
/* |V | threads blocks, 1D threads per block */

2 Launch PSKernel (of f , dst , cnt , t )
3 ProcedureMKernel (of f , dst , cnt , t )
4 u ← blockIdx.x, of fwarp ← of f [u] + threadIdx.y
5 for i ← of fwarp ; i < of f [u + 1]; i ← i + blockDim.y do
6 c ← 0, v ← dst [i]
7 if u > v or du /dv > t or dv /du > t then continue
8 c ←WarpW iseBlockMerдe(N (u), N (v))

/* A warp-wise reduction for the sum of counts */

9 foreach k ∈ {16, 8, 4, 2, 1} do
10 c ← c + __shfl_down(c , k )
11 if threadIdx.x == 0 then cnt [i] ← c
12 Procedure PSKernel (of f , dst , cnt , t )
13 u ← blockIdx.x, of fthread ← of f [u] + threadIdx.x
14 for i ← of fthread ; i < of f [u + 1]; i ← i + blockDim.x do
15 c ← 0, v ← dst [i]
16 if u > v or du /dv ≤ t or dv /du ≤ t then continue
17 cnt [i] ← InterSectPS (N (u), N (v))

Memory Allocation. We allocate the CSR arrays and the com-
mon neighbor count array on the unified memory for both MPS
and BMP. For BMP, we allocate a pool of bitmaps on the global
memory directly without using the unified memory feature, since
the bitmaps are frequently accessed by thread blocks, so we avoid
page swaps on the bitmaps.

4.2.1 CUDA Implementations. To avoid as much irregular memory
access as possible on the GPU, for both MPS and BMP, we symmet-
rically assign the count (cnt[e(v,u)] ← cnt[e(u,v)]) on the CPU in
parallel as a post-processing phase.

Co-Processing on the Same Count Array. Given an edge
offset e(u,v), the reverse edge offset finding of e(v,u) is time-
consuming due to the intensive binary searches. To hide the la-
tency, we propose assigning cnt[e(u,v)] ← e(v,u) for each edge
(u,v) satisfying u > v on the CPU, which overlaps the common
neighbor counting on the GPU for each edge (u,v) satisfying u < v .
The reverse edge offsets are utilized for the fast final symmetric as-
signment, after all the counting is completed on the GPU. The final
assignment on the CPU is done by cnt[e(u,v)] ← cnt[cnt[e(u,v)]]
(u > v). The co-processing is enabled by the concurrent access of
the same array on both CPU and GPU, a feature supported on recent
GPUs. We summarize the main program with the co-processing
technique for both MPS and BMP in Algorithm 4, and show the
CUDA kernels of MPS and BMP respectively in Algorithms 5 and 6.

MPS. We launch two kernels for the non-degree-skewed and
degree-skewed cases respectively (Algorithm 5). The block-wise
kernel (Lines 3-11) exploits the warp-level parallelism, using each
thread warp (32 threads) to handle a set intersection N (u) ∩ N (v)
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Algorithm 6: Parallel BMP kernels
Input: a graphG = (V , E) in a CSR = (of f and dst arrays)
Output: the common neighbor counts cnt [e(u , v)] of all the adjacent vertex pairs

(u , v) satisfying u < v
1 BA ← an array of bitmaps, BSA ← a bitmap occupation status array
2 nC ← the maximum number of concurrent thread blocks per SM

/* |V | thread blocks, 2D threads per block (blockDim.x: the warp size 32,

blockDim.y: the number of warps per block) */

3 Launch BMPKernel (of f , dst , cnt , BA , BSA , nC )
4 Procedure BMPKernel (of f , dst , cnt , BA , BSA , nC )
5 u ← blockIdx.x, t id ← threadIdx.x+ blockDim.x ·threadIdx.y
6 if t id == 0 then B ← AcquireBitmap(BA , BSA , nC )
7 __syncthreads()
8 AtomicConstrucBitmap(B, N (u))
9 __syncthreads()

10 of fwarp ← of f [u] + threadIdx.y
11 for i ← of fwarp ; i < of f [u + 1]; i ← i + blockDim.y do
12 c ← 0, v ← dst [i]
13 if u > v then continue
14 foreachw ∈ N (v) in warp-wise parallel do
15 if thew ’s bit is a 1-bit in the bitmap B then
16 c ← c + 1
17 foreach k ∈ {16, 8, 4, 2, 1} do
18 c ← c + __shfl_down(c , k )
19 if threadIdx.x == 0 then cnt [i] ← c
20 __syncthreads()
21 ClearBitmap(B, N (u)), ReleaseBitmap(BSA)
22 Procedure AcquireBitmap(BA , BSA , nC )
23 i ← 0, sm_id ← the id of the current SM
24 while atomicCAS(&BSA[sm_id · nC + i], 0, 1)! = 0) do
25 i ← i + 1
26 return BA[sm_id · nC + i]

and conduct a block-wise merge, the logic of which is similar to the
vectorized one on the CPU [14]. The multiplication of block sizes
for the N (u) and N (v) is 32 (warp size). For each warp, we load 32
elements of a neighbor set on demand into its own shared memory
region for the merge. After the merge, intermediate match counts
are stored in the register of each thread within a warp. We adopt
a warp-shuffling intrinsic function to perform a reduction and get
the common neighbor count, after which a single thread in each
warp writes the count back to the global memory. Different warps
in a thread block utilize their own shared memories without any
contention. Thus, no synchronization for a thread block is required.

However, the pivot-skip-based merge involves irregular lower
bound operations (including exponential and binary searches),
which consists of irregular gatherings. The warp-level parallelism
cannot be exploited in these cases. Thus, in our pivot-skip-based
merge kernel (Lines 12-17), we directly map each single-edge neigh-
bor set intersection to a thread without using the shared memory.

BMP.We launch a single CUDA kernel for BMP (Algorithm 6).
We allocate a bitmap of cardinality |V | for each parallel execution
context (i.e., a thread block). To manage a pool of bitmaps (BA), we
introduce a bitmap occupation status array (BSA). The total number
of bitmaps is the number of SMs multiplying the maximum number
of concurrent thread blocks on an SM (nC ). The logic of the kernel
is as follows. A single thread in a block acquires the bitmap by
atomically checking and updating the corresponding area in the
BSA for the current SM (Lines 22-26). Before index construction, we
synchronize threads in each thread block (Line 7). After the bitmap
is acquired for the thread block, all the threads in the block construct
the index by atomic-or operations on the corresponding word. The
index construction is completed with the synchronization within
each thread block. With the index, each warp in a thread block
process edges for the counting using the bitmap-array intersections.
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Figure 2: Illustrating the multi-pass processing on the GPU

Each threadwithin the samewarp checkswhether its corresponding
bit for a vertex is set, and updates its local counter after finding a
match. A warp-wise reduction of intermediate results computes the
final result of |N (u)∩N (v)|. After all the threads in a block complete
the work, the corresponding bitmap is cleared and released in a
similar logic to its allocation and construction.

4.2.2 Multi-Pass Processing Technique. When the graph does not
fit in the global memory, to preserve data access locality and mini-
mize page swaps, we propose a multi-pass processing technique.
The key idea is to process a subset of adjacent vertices in a pass,
which increases the memory access locality. We give an example of
multi-pass task processing in Figure 2. We split a range [0, |V |) into
multiple vertex ranges and assign each range to a pass. In a pass,
we iterate through all the vertices u ∈ V , and compute counts only
for u’s neighbor v in the vertex range of the current pass (in our
examplev ∈ [2, 3)). In this way, we access a subset of the neighbors
only during the iteration. To minimize page swaps, we estimate the
maximum processing range capacity of each pass by deducting the
total global memory capacityMemдlobal by (1) the bitmap mem-
ory consumption MemBA , and (2) the tunable reserved memory
for the sequential access of the CSR and count arrayMemr eserved .
The number of passes is computed via dividing the CSR memory
consumptionMemCSR by the maximum processing range capacity,
i.e., ⌈MemCSR/(Memдlobal −Memr eserved −MemBA )⌉.

4.3 Optimizations
To fully utilize the hardware features of modern processors, we
design four optimization techniques: (1) vectorization techniques
for MPS (discussed in Section 3.1); (2) the bitmap range filtering for
BMP to reduce access to the bitmap of cardinality |V |, and utilize
the cache on the CPU and KNL or the shared memory on the GPU;
(3) the memory allocation of data structures on the MCDRAM on
the KNL; and (4) the co-processing which overlaps the reversed
edge offset assignment on the CPU and the counting on the GPU
for both MPS and BMP (discussed in Section 4.2.1).

Bitmap Range Filtering. In real-world graphs, only a small
portion of a neighbor set contribute to the common neighbor count-
ing. In other words, the matches of two neighbor sets are sparse.
To make use of the sparsity, we introduce a small bitmap, a bit of
which is to indicate the existence of 1-bit in a certain range of the
underlying bitmap of cardinality |V |. If a quick lookup on the small
bitmap tells us that in the current range there is no 1-bit, we can
avoid accessing the underlying bitmap. The range size is tunable
via setting the bitmap range scale to fit the small bitmap in the
cache on the CPU and KNL or the shared memory on the GPU.

High Bandwidth Memory Utilization. A neighbor set is rep-
resented in a sorted array, and both arrays and bitmaps are accessed
sequentially in MPS and BMP for the intersections. Such access
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patterns can fully utilize the high bandwidth memory on the KNL
to improve the scalability to number of threads for both algorithms.
There are two ways to use the MCDRAM: (1) directly configure
the cache mode without changing the implementations; and (2)
switch to the flat mode, and allocate bitmaps and CSR arrays on
the MCDRAM using a memkind library.

5 EVALUATION
In this section, we evaluate the effectiveness of individual tech-
niques for both MPS and BMP on three processors, compare the
optimized algorithms for each processor on five real-world billion-
edge graphs, and summarize our experimental findings.

5.1 Experimental Setup
Since the architectures of the KNL and CPU are more similar than
the GPU, we evaluate the effectiveness of four common techniques
for the two processors: (1) the degree-skew handling (DSH) for MPS
and BMP, (2) the vectorization or instruction-level parallelization
(V) for MPS, (3) the task-level parallelization (P) for MPS and BMP,
and (4) the bitmap range filtering (RF) for BMP.We further evaluate
the high bandwidth memory MCDRAM usage (HBW) on the KNL.

We start from the sequential implementations of the algorithms;
on the KNL, we initially configure the MCDRAM at the flat-mode.
Subsequently, we enable the techniques one by one to evaluate
their effectiveness in the order of DSH, V, P, RF and HBW. We first
evaluate the techniques DSH and V with sequential implementa-
tions to study the workload reduction effects from algorithmic and
vectorization optimizations. The RF and HBW are evaluated after
parallelization, since these two orthogonal techniques influence
the scalability to number of threads by reducing the latency and
improving the bandwidth of the memory access respectively.

On the GPU, we evaluate four techniques: (1) the co-processing
(CP) to reduce the CPU’s post-processing time forMPS and BMP, (2)
the multi-pass processing (MPP) for MPS and BMP, (3) the bitmap
range filtering (RF) with the shared memory for BMP, and (4) the
block size tuning (BST) for MPS and BMP.

We evaluate the four orthogonal techniques on the GPU by
enabling them one by one in the order of CP, MPP, RF and BST.
By default, we use 4 warps per thread block, resulting in at most
16 (2048/128) concurrent thread blocks per SM. According to the
Nvidia document, 16 is the maximum number of thread blocks
simultaneously scheduled on a SM of the TITAN Xp GPU. Our
default setting targets a maximum of 100% occupancy of the GPU.

Finally, we compare the optimized implementations of MPS and
BMP for each processor on five real-world graphs.

Environment.We implement the algorithms on the CPU and
KNL in C++, and compile them with icpc 17.0.0. We implement the
GPU algorithms in CUDA 8.0, and compile them with nvcc 8.0.61.
We conduct experiments on two Linux servers: (1) a CPU server
with CPUs and Nvidia TITAN Xp GPUs, and (2) a KNL server with
a KNL processor. The CPU server has two 14-core 2.4GHz Intel
Xeon E5-2680 CPUs. The L1, L2, L3 cache and DRAM of the CPU
server are 64KB, 256KB, 35MB and 512GB respectively. The Nvidia
GPU on the CPU server has 30 SMs, each of which supports at most
2048 threads. The KNL server has a 64-core 1.3GHz Intel Xeon Phi
7210 Processor, configured in the quadrant mode. The L1, L2 cache,

Table 1: Real-world Graph Statistics

Dataset |V | |E | d max d
livejournal (LJ) 4, 036, 538 34, 681, 189 17.2 14, 815
orkut (OR) 3, 072, 627 117, 185, 083 76.3 33, 312
web-it (WI) 41, 291, 083 583, 044, 292 28.2 1, 243, 927
twitter (TW) 41, 652, 230 684, 500, 375 32.9 1, 405, 985
friendster (FR) 124, 836, 180 1, 806, 067, 135 28.9 5, 214

Table 2: Percentage of the highly skewed set intersections.
Dataset LJ OR WI TW FR

Percentage 1.2% 1.8% 27.9% 31.0% 1.6%
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Figure 3: Effect of degree skew handling (single threaded)

MCDRAM and RAM of the KNL server are 64KB, 1024KB, 16GB
and 96GB respectively.

Datasets. We select five real-world graphs (shown in Table 1)
downloaded from SNAP [17] andWebGraph [6, 7], which are widely
used in the evaluation of graph algorithms [1, 8, 9, 13, 23]. For
the all-edge common neighbor counting, WI and TW incur more
degree-skewed set intersections (i.e., du >> dv for N (u) ∩ N (v)),
than the other datasets LJ, OR and FR. We show the percentage of
highly skewed intersections in the counting (du/dv > 50 supposing
du > dv )1 in Table 2.

Metric.We run each experiment multiple times and report the
average in-memory processing time. Specifically, we measure the
elapsed time from the end of graph loading into the memory to the
computation of the all-edge counting.

5.2 Evaluation of Individual Techniques
For brevity, in this section, we present the evaluation of individual
techniques with the two representative datasets TW and FR.

5.2.1 Techniques on the CPU and KNL. We evaluate the four com-
mon techniques on both processors and the high bandwidth mem-
ory MCDRAM utilization on the KNL.

Effect ofDegree SkewHandling.We implement a basicmerge-
based algorithm (M) without the pivot-skip technique as our base-
line. We compare both MPS and BMP with M, and show the results
in Figure 3. We firstly evaluate on the TW, where the percentage of
highly skewed set intersections is 31% (Table 2). On the TW, MPS is
3.6x and 7.1x faster than M, on the CPU and KNL respectively. On
the TW, BMP is 20.1x and 29.3x faster than M, on the CPU and KNL
respectively. We then evaluate on the FR. MPS achieves a similar
performance to M. BMP runs 2.5x and 1.1x faster than M, on the
CPU and KNL respectively. The improvement on the KNL is much
less than that on the CPU, because the KNL benefits more from the
regular memory access in M than the CPU, and the CPU favors the
saving from pivot-skip and the bitmap-index than the KNL.

Effect of Vectorization. We utilize the AVX2 and AVX-512
instruction sets on the CPU and KNL respectively to improve MPS.
We compare the original MPS, vectorized MPS, and BMP in Figure 4.
On the CPU, MPS-AVX2 runs 1.9x and 2.0x faster than MPS on the

1 We choose an empirical number 50 as the threshold to control the merge algorithm
selection in MPS (Algorithm 1).
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Figure 4: Effect of vectorization (single threaded)
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Figure 5: Scalability to number of threads (with V enabled)

TW and FR, and MPS-AVX-512 runs 2.6x and 2.5x faster than MPS
on the TW and FR. The vectorized MPS shows better improvements
on the KNL than on the CPU, due to a 2x larger vector register
width on the KNL than on the CPU. Comparing vectorized MPS
with BMP, we observe CPU favors BMP; on the TW, MPS-AVX-512
is slower than BMP (taking 1.6x time), whereas on the FR, MPS-
AVX-512 is 2.1x faster than BMP. This result suggests that BMP
works better than MPS except on the FR on the KNL.

Effect of Parallelization.We evaluate the scalability to number
of threads for both parallel MPS and BMP in Figure 5. Since the
CPU and the KNL support two and four hyper threads respectively;
we vary the number of threads from 1 to 64 on the CPU and from
1 to 256 on the KNL. MPS scales well on the CPU and achieves
41.1x and 36.1x speedups over the vectorized sequential one with
64 threads on the TW and FR respectively, which are greater than
the number of cores 28, due to the regular and predictable memory
access patterns and the hyper-threading techniques. MPS also scales
well on the KNL before the number of threads becomes greater than
64, when the memory bandwidth is saturated. Thus, the speedups
of MPS on the KNL are up to 67.0x and 72.0x on the TW and FR
respectively, even though there are 128 VPUs on the KNL. We next
study the scalability of BMP. In each bitmap index based intersection
N (u) ∩ N (v), both the bitmap of N (u) and the sorted array of N (v)
are accessed. The accesses of bitmap may cross a wide range, since
N (v) can scatter in any position of [0, |V |). On the CPU, BMP scales
well with the number of threads, but only achieves 24.0x and 15.0x
speedups respectively on the TW and FR, due to the poor memory
access pattern than MPS. The speedup with 64 threads on the FR
is worse than that on the TW, due to a 3x wider range of bitmap
indices and more sparsity of N (v). On the KNL, with 128 and 256
threads, BMP slows down due to the poorer memory access locality
from the increasing number of thread-local bitmaps.

Effect of Bitmap Range Filtering. Recall that we introduce
a small bitmap with each bit indicating the existence of non-all-
zero range for the underlying large bitmap. We set the size ratio
of the two bitmaps at 4096, to make the small bitmap fit into L1
cache. We show the memory consumption of each thread-local

Table 3: Memory consumption of each thread-local bitmap
Dataset TW FR

Bitmap Type small large small large
Memory Consumption 1.3KB 5.0MB 3.7KB 14.9MB
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Figure 6: Effect of bitmap range filtering (with V and P enabled)
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Figure 7: Effectiveness of MCDRAM utilization
Table 4: Comparison with the baseline M (seconds).

Dataset TW FR
Processor CPU KNL CPU KNL
TM 20065.3 108418.6 4528.8 11199.9

TMPS 5527.2 15244.4 4919.1 11224.1
TMPS+V 2891.6 5904.0 2470.7 4569.4

TMPS+V+P 70.3 83.1 68.3 60.1
TMPS+V+P+HBW N/A 52.7 N/A 33.9

TBMP 996.2 3704.3 1837.2 9591.3
TBMP+P 41.5 78.1 122.5 248.7

TBMP+P+RF 40.4 82.1 63.8 115.7
TBMP+P+RF+HBW N/A 68.5 N/A 92.6
Best MPS Speedup over M 286x 2,057x 66x 330x
Best BMP Speedup over M 497x 1,583x 71x 121x

bitmaps in Table 3. We compare BMP enabled the technique RF
(BMP-RF) with both BMP and MPS in Figure 6. The results on the
two processors show similar trends. On the TW dataset, BMP and
BMP-RF have a similar performance. In comparison, on the FR,
BMP-RF runs 1.9x and 2.1x faster than BMP for the CPU and the
KNL respectively. This is because (1) bitmaps on the FR has a larger
cardinality and consumes more memory than on the TW; and (2)
FR is a more uniform dataset than TW on vertex degrees and the
range filtering helps greatly in avoiding access of the big bitmaps
for non-degree-skewed intersections.

Effect of MCDRAM Utilization. With all the four techniques
enabled, we further study the effect of utilizing the high bandwidth
memory MCDRAM on the KNL. We compare the MCDRAM in the
cache and flat modes, and show the results in Figure 7. MPS-Flat
runs 1.6x and 1.8x faster than MPS on TW and FR respectively, be-
cause MCDRAM improves the parallel efficiency of MPS. For exam-
ple, MPS-Flat achieves 112.0x speedup over the sequential MPS-Flat,
more significant than the 71.0x speedup of MPS over the sequential
MPS. The result indicates that MPS is memory-bandwidth bounded.
BMP-Flat runs 1.2x and 1.3x faster than BMP on the TW and FR
respectively, which are less significant to the improvements of MPS-
Flat over MPS. This is because the bitmap access is more sensitive to
the memory access latency than the bandwidth. Algorithms under
the cache mode show competitive performance with those under
the flat mode, because the capacity of MCDRAM is large (16GB) and
the accesses have good locality. On both datasets, both MPS-Cache
and BMP-Cache are slightly slower than MPS-Flat and BMP-Flat
respectively, due to the data movement overhead in the cache mode.

Summary.We summarize the performance improvement from
the five techniques in Table 4. The degree-skew handling techniques
in MPS and BMP achieve 7x and 30x speedups over the baseline M



Accelerating All-Edge Common Neighbor Counting on Three Processors ICPP 2019, August 5–8, 2019, Kyoto, Japan

Table 5: Post-processing time on the CPU (seconds)
Dataset TW FR

Enabling Co-Processing No Yes No Yes
Elapsed Time 5.6 0.9 19.0 3.8

Table 6: Memory consumption of data structures and estimated
number of passes

Dataset TW FR
Algorithm MPS BMP MPS BMP
Memcnt 5.2GB 13.5GB
MemCSR 5.3GB 13.9GB

MemBA (480 bitmaps) 0 2.3GB 0 7.0GB
Estimated number of passes 1 1 2 4
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Figure 8: Effect of number of passes

respectively. The two orthogonal techniques V and P for MPS bring
79x-84x and 183x-186x speedups over the sequential MPS on the
CPU and KNL respectively. The technique HBW further improves
the memory bandwidth in MPS, achieving 1.6x-1.8x speedups over
the parallel vectorizedMPS. The orthogonal techniques P and RF for
BMP achieve 25x-28x and 47x-83x speedups on the CPU and KNL
respectively. The technique HBWbrings only 10-20% improvements
for the parallel BMP-RF, which is random access dominant. CPU
favors BMP whereas KNL favors MPS, because BMP works better
with CPU’s large caches than KNL and KNL’s many cores perform
the computation of MPS faster than CPU.

5.2.2 Techniques on the GPU. We evaluate four techniques for the
two algorithms on the GPU, with 4 warps (128 threads) per thread
block by default.

Effect of Co-Processing. We show the symmetric assignment
post-processing time on the CPUwith andwithout the co-processing
in Table 5. The results show that co-processing reduces the elapsed
time from 5.6 to 0.9 and from 19.0 to 3.8 seconds on the TW and
FR respectively, due to the overlap of concurrent computations on
the CPU and GPU. In the following evaluation on the GPU, we
enable this technique; and our reported elapsed time includes the
post-processing time on the CPU.

Effect of Multi-Pass Processing. We show the memory con-
sumption of data structures and our estimated number of passes
for both MPS and BMP in Table 6. Recall that the number of passes
is estimated based on ⌈MemCSR/(Memдlobal − Memr eserved −

MemBA )⌉ whereMemCSR ,Memr eserved andMemBA are themem-
ory consumption of the CSR, the reserved memory and the bitmap
respectively, and Memдlobal is the capacity of the global memory.
In our setting, the global memory is 12GB and the reserved memory
size is 500MB. We use 128 threads per thread block for both MPS
and BMP. Thus, there are 16 (2048/128) concurrent blocks per SM.
Given 30 SMs in total, we need to allocate 480 bitmaps for BMP.

We evaluate the technique MPP by varying the number of passes
for both MPS and BMP. To avoid excessively long execution time
due to thrashing page swaps, we set the time limit to an hour, and
stop the non-completed executions. We show the results in Figure 8.
On the TW, given more passes, the elapsed time of both algorithms

Table 7: Elapsed time of BMP on the GPU (seconds)
Dataset TW FR

Enabling Range Filtering No Yes No Yes
Elapsed Time 46.8 24.9 184.1 97.5
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Figure 9: Effect of block size

increases slightly. As the memory consumption of both algorithms
is within the global memory capacity, the ascending trend of both
curves is resulted from increased memory loads from the multi-pass
processing. In contrast, on the FR, BMP fails when the number of
passes is less than three, due to thrashing page swaps. The results
show that our estimated number of passes is effective in minimizing
page swaps and preserving the memory access locality.

Effect of Bitmap Range Filtering. The technique RF for BMP
on the GPU is similar to that on the KNL and CPU. The only differ-
ence is that we write the small bitmap for range filtering into the
on-chip shared memory on the GPU (48KB per SM). We show the
results in Table 7. The range filtering speeds up BMP by 1.9x on
the TW and FR, due to the reduction of global memory loads.

Effect of Block Size Tuning. We tune the number of warps
per thread block from 1 to the maximum 32, and show the results
in Figure 9. In our setting, there are 2048 threads per SM, and at
most 16 thread blocks concurrently scheduled in a SM. Then, one
and more than three warps per thread block corresponds to 25%
and 100% theoretical occupancy respectively. The curves of MPS
are flat on both TW and FR, which indicates MPS is not sensitive to
the changes of computation resources and is bounded by memory
access. BMP’s performance improves when the number of warps
increases from 1 to 4. This performance improvement in BMP is
because a larger block size leads to fewer thread blocks and fewer
bitmaps, which results in fewer number of passes on the FR. When
the thread block size is sufficiently large, the memory access latency
is fully hidden in the parallel computation, and BMP’s performance
flattens. In particular, on the FR, BMP with 32 warps per block runs
2x faster than that with the default block size.

Summary. The technique CP reduces more than 80% of post-
processing time on the GPU on both TW and FR datasets. MPP
reduces the elapsed time by orders of magnitude for both algorithms
on the FR. RF reduces the time by half on both data sets, whereas
BST achieves 2.2x and 3.8x speedups over the non-optimized BMP
on the TW and the FR respectively. Overall, the GPU favors BMP,
because BMP has less workload than MPS, exploits warp-level
parallelism and utilizes GPU resources more effectively than MPS.

5.3 Comparison of Optimized Algorithms
We compare the performance of the optimized MPS and BMP on
three processors with five datasets in Figure 10. Firstly, we compare
MPS and BMP for each processor. CPU favors BMP, because (1) BMP
has less workload for each set intersection thanMPS; and (2) the out-
of-order instruction execution and the cache-memory hierarchy of
the CPU hides the memory access latency of BMP. KNL favors MPS,
because (1) MPS exploits the vectorization technique and scales
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Figure 10: Elapsed time of optimized algorithms for each processor on five real-world graphs

better than BMP, and has a better memory access pattern; and (2)
KNL is equipped with 128 VPUs and AVX-512 instruction sets, and
high bandwidth memory MCDRAM. GPU favors BMP, because (1)
BMP incurs fewer global memory loads than MPS; (2) BMP exploits
warp-level parallelism which results in better occupation of GPU
resources; and (3) the pivot-skip merge kernel for MPS on the GPU
is inefficient due to irregular memory gathering.

Secondly, we compare the performance of CPU-BMP, KNL-MPS
and GPU-BMP on each graph. All the computations on each pro-
cessor can complete within tens of seconds, and the performance
of the best algorithms on three processors differs by a factor of 2.5x
at maximum. On the relatively smaller datasets LJ and OR, all the
algorithms complete within 2.3 seconds. On the WI and TW with
more degree-skewed set intersections, GPU-BMP works best due to
the warp-level parallelism and full utilization of 30 SMs. On the FR,
KNL-MPS works better because it fully exploits its vectorization,
parallelization techniques and utilizes the VPUs and MCDRAM.
CPU-BMP is less competitive but has acceptable performance.

5.4 Summary
• MPS exploits the vectorization technique, and scales better to
number of threads than BMP; while BMP involves fewer work-
loads for each neighbor set intersection than that of MPS.
• The performance of the two algorithms is close on both CPU and
KNL, but may differ up to an order of magnitude on the GPU.
MPS works best on the KNL, because of the 128 VPUs and the
high bandwidth memory MCDRAM. CPU favors BMP, because
its L3 cache reduces the memory access latency. GPU also favors
BMP, since the warp-level parallelism helps utilize the resources.
• BMP on the GPU and MPS on the KNL work best respectively
for degree-skewed and non-degree-skewed large graphs. The
performance of both algorithms on the CPU is moderate, at most
1.9x slower than the best algorithms on both the KNL and the
GPU. MPS on the GPU is always the slowest, followed by BMP
on the KNL.
• Our optimized parallel algorithms complete the computation
within tens of seconds on billion-edge graphs, enabling online
graph analytics.

6 CONCLUSION
To accelerate the operation of all-edge common neighbor counting,
we study MPS and BMP two representative merge-based and index-
based algorithms respectively. To exploit the hardware features of
modern processors, we parallelize and optimize both algorithms.
Furthermore, we evaluate individual techniques for the two algo-
rithms on each platform, and compare the optimized algorithms.
We show that for each processor, our optimized algorithms can com-
plete the operation within tens of seconds on billion-edge graphs,
enabling online graph analytics.
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