
Yulin Che, Zhuohang Lai, Shixuan Sun,
Qiong Luo, Yue Wang

Hong Kong University of
Science and Technology 1

Accelerating All-Edge Common
Neighbor Counting on Three Processors

2
2

Outline

3、Parallelization & Optimization Techniques

1、Motivation & Problem Statement

2、Our Solution

4、Experimental Study

5、Conclusion

Outline

• Basic Components
• utilize structural similarity among vertices for clustering
• identify clusters and vertex roles (cores, non-cores)

Graph Structural Clustering

2
3clusters

core
non-core

Example: SCAN [Xu+, KDD’07]

2
4

• Structural Similarity Computation
• based on neighbors of two vertices 𝑢 and 𝑣 (cosine measure):

• 𝑠𝑖𝑚 𝑢, 𝑣 = 𝑁 𝑢 ∩ 𝑁 𝑣 / |𝑁(𝑢)| . |𝑁(𝑣)|�

• 𝑢 and 𝑣 are similar neighbors, if
• they are connected (adjacent)
• their structural similarity 𝑠𝑖𝑚(𝑢, 𝑣) ≥ 𝜀

𝑁 6 = 5,6,7,8,9
𝑁 9 = 6,7,8,9,10,11
𝑠𝑖𝑚 6,9 = 4/ 5 . 6� ≈ 0.73 similar:

𝑠𝑖𝑚(6,9) ≥ 0.6

𝜀 = 0.6, 𝜇 = 3

• Structural Similarity Computation
• based on neighbors of two vertices 𝑢 and 𝑣 (cosine measure):

• 𝑠𝑖𝑚 𝑢, 𝑣 = 𝑁 𝑢 ∩ 𝑁 𝑣 / |𝑁(𝑢)| . |𝑁(𝑣)|�

• 𝑢 and 𝑣 are similar neighbors, if
• they are connected (adjacent)
• their structural similarity 𝑠𝑖𝑚(𝑢, 𝑣) ≥ 𝜀

Computation of SCAN

2
5

involve intensive set intersections
only intersect for adjacent vertices

• Reducing the number of set intersections
• Basic Idea: prune some set intersection computations
• Sequential Algorithms: pSCAN [Chang+, ICDE’16]
• Parallel Algorithms: anySCAN [Mai+, ICDE’17], SCAN-XP

[Takahashi, NDA’17], ppSCAN [Che+, ICPP’18]
• Results: workload (set intersection) reduction computation is quite

trivial but helpful

Recent Work Improving SCAN

2
6

• Issues: for a fixed dataset, given different parameters, we need
to recompute the set intersection for the same edge

• Our Solution: compute the common neighbor count once for
all the edges

Issues and Solutions in Improving SCAN

2
7

Problem: All-Edge Common Neighbor Counting

2
8

1

0

2 3 0 2 0 1 00

1

2

3 off

dst

3 5 7 8

0 1 2 3

end

(a) example graph (b) CSR representation

u < v

u > v

(c) output array

• Problem Statement: Given an undirected graph, compute the
common neighbor counts of each adjacent vertex pairs

• Input: a graph in a Compressed Sparse Rows (CSR) format
• Output: common neighbor counts for each adjacent vertex pair in the

CSR

cnt
cnt[e(u,v)] = cnt[e(v,u)]

e.g., cnt[e(0,1)] = cnt[e(1,0)]

2
9

Outline

3、Parallelization & Optimization Techniques

1、Motivation & Problem Statement

2、Our Solution

4、Experimental Study

5、Conclusion

Outline

Our Solution

2
10

• Two Algorithms
• MPS: a Merge based algorithm with Pivot Skip optimization on two

sorted arrays to compute counts (edge-centric computation unit)
• BMP: a bitmap index-based algorithm to dynamically construct an

index on one array and loop over the other array and lookup the
bitmap index to compute counts (vertex-centric computation unit)

1

0

2 3 0 2 0 1 0

off

dst

3 5 7 8

0 1 2 3

end

u < v

u > v

cnt

u 0 0 0 1 1 2 2 3

symmetric assignment

vertex centric unit

edge centric unit

Common Optimizations

2
11

• Symmetric Assignment: Utilize the symmetricity (cnt[e(u,v)] =
cnt[e(v,u)]) to avoid redundant computations

• Degree Skew Handling: Optimize the algorithm to make the complexity
of each intersection relates to the smaller degree vertex only (O(min(du,
dv))

1

0

2 3 0 2 0 1 0

off

dst

3 5 7 8

0 1 2 3

end

u < v

u > v

cnt

u 0 0 0 1 1 2 2 3

symmetric assignment

vertex centric unit

edge centric unit

MPS’s Edge-Centric Unit Computation

2
12

1 2 3

2

dst[off[0]:off[1])

dst[off[1]:off[2]) 0

u = 0, v =1 off_u

off_v

end

end

dst[off_u] == dst[off_v]:

dst[off_u] < dst[off_v]:

dst[off_u] > dst[off_v]:

(a) initial state (b) offset advance rules

off_u++
off_v++

off_u++

off_v++

• Scalar merge over two sorted arrays
• conduct a while loop to count the match and increment the offset

for the smaller value array until the end of one array is reached

Improving Scalar Merge

2
13

• Vectorized block-wise merge over two sorted arrays
• do a while loop while the end is not reached

• load two blocks of elements and shuffle the positions to conduct
all-pair comparisons and count the matches

• increment the offset of the array with smaller last block element

1 2 3

20

off_u

off_v

end

end

(a) initial state (c) load, shuffle, and compare-equal

1 21 2

0 2 0 2

compare equality
and move mask

0 0 0 1

128bit-vector registersblock of
size 2

1 2 3

20

(b) block-wise merge

all-pair
comparisons

end

end match count

Limitation of Vectorized Block-Wise Merge

2
14

off_u

off_v

end

end

u = 0

v = 1

99

0 100 999

1 9992 100 ……

many all-pair block-element
comparisons

d[u] >> d[v]

elements < 100

• Fail to handle the cardinality (degree) skew

Pivot Skip Merge

2
15

match

i = 1: count and advance i = 2: reach the end and return the count
off_u

off_v

end

end

u = 0

v = 1

99

0 100 999

1 9982 100 ……

i = 0 i = 1

i = 0

pivot value

offset jump

offset

iteration #i

match

advance off_u and off_v by 1
cnt[e(u,v)]++

• Do a while loop until we reach the end of one array
• fix an element in one array as the pivot; in the other array, find the

first element not less than the pivot value via a galloping search
• do the same in the other array
• count the matches

Limitation of Pivot Skip Merge

2
16

v = 1

u = 0 1 3 5

20

off_u

off_v

(a) initial state

4

…

…

1 3 5

20

off_u

off_v

4

…

…

(b) after the 1st iteration

1 3 5

20

off_u

off_v

4

…

…

(c) after the 2nd iteration

• Do not behave well for cases of similar degree adjacent vertices
• Pivot Skip Merge (PS) may only advance a single step each time

• Thus, we combine vectorized block-wise merge (VB) and pivot-skip
merge (PS) by setting a degree-skew ratio to choose PS only when the
degree-skew ratio is high (e.g. > 50)

BMP’s Vertex-Centric Unit Computation

2
17

1

0

2 3 0 2 0 1 0

off

dst

3 5 7 8

0 1 2 3

end

u < v

u > v

cnt

u 0 0 0 1 1 2 2 3

symmetric assignment

sorted neighbor arrays

vertex centric unit

0 1 1 1 bitmap for N(u) , |V| = 4 bitmap bits, 0 or 1B

current u

• For a vertex u, we construct a bitmap B(u)
• Then we loop over each v in N(u) satisfying the constraint d(v) < d(u)
• we loop over N(v) and lookup B(u) to see if we can find a match to

increment the common neighbor count
• and then we assign the count symmetrically from e(u,v) to e(v,u)

2
18

Outline

3、Parallelization & Optimization Techniques

1、Motivation & Problem Statement

2、Our Solution

4、Experimental Study

5、Conclusion

Outline

2
19

OutlineParallelization on CPUs

start offset end offset

1

0

2 3 0 2 0 1 0

off

dst

3 5 7 8

0 1 2 3

end

u < v

u > v

task

task offset

cnt

1) given offset and v, find u;
2) compute only for (u < v);
3) assign cnt[e(u,v)] to cnt[e(v,u)].

u 0 0 0 1 1 2 2 3

find e(v,u) by a lower-bound operation

• Group a fixed number of edges as tasks, denoted by an offset pair

2
20

OutlineOptimization of Finding Source Vertex

• Amortize the cost of finding a source vertex for each edge
• use a thread local variable u to record current source vertex
• check the current edge offset and compare it with off[u], if it

exceeds the range, we do a lower bound operation to find a new u

2
21

OutlineExtension for BMP

• Replace the ComputeCntMPS with ComputeCntBMP logic
• Use a thread local bitmap for the index
• Use thread local variable pu to record last indexed or constructed

bitmap B(pu) and clear the bitmap when we process another vertex

22

OutlineParallelization on GPUs

• Utilize the unified memory feature
• Design a co-processing skeleton to leave some symmetric assignment

relevant workload to the CPU
• reverse edge offset computation (cnt[e(v,u)] = e(u,v) where u < v)
• symmetric assignment of cnt[e(v,u)] where u < v

reverse edge
offset computation

symmetric assignment

23

OutlineCUDA Skeleton Design

• Memory Allocation
• Unified memory: CSR and result count arrays
• Direct allocation on the device: a pool of bitmaps for BMP

• Thread Block Mapping
• Each vertex related common neighbor counting tasks are mapped to

a CUDA thread block in a vertex-centric manner, since GPU has an
efficient hardware queue to schedule millions of thread blocks

24

OutlineMPS CUDA Kernels

Each warp processes an edge

Each thread processes an edge

• MPS: launch two CUDA kernels (VB and PS) for the cardinality
(degree) skewed and non-skewed cases respectively

• MKernel: block-wise merge utilizing shared memory
• PSKernel: pivot-skip merge kernel handling the cardinality skew

25

OutlineBMP CUDA Kernel

• A bitmap is acquired from a pool
• Each thread block constructs a bitmap index B(u)
• Each warp processes an edge
• A bitmap is released to the pool

26

OutlineSummary of Optimization Techniques

• Vectorization (discussed)
• Bitmap Range Filtering, utilizing sparsity of matches
• MCDRAM (high bandwidth memory) usage on the KNL
• Co-processing (discussed)
• Multi-pass processing to preserve memory access locality
• Block size tuning on the GPU

2
27

Outline

3、Parallelization & Optimization Techniques

1、Motivation & Problem Statement

2、Our Solution

4、Experimental Study

5、Conclusion

Outline

2
28

OutlineExperimental Setup

• Datasets

• Platform
• a CPU server with CPUs and Nvidia TITAN XP GPUs

• The CPU server has two 14-core 2.4GHz Intel Xeon E5-2680 CPUs,
with 35MB L3 Cache

• The Nvidia GPU on the CPU server has 30 SMs, each of which
supports at most 2048 threads

• a KNL server with a KNL processor, 64-core 1.3GHz Intel Xeon Phi 7210
Processor, configured in the quadrant mode with 16GB MCDRAM

2
29

OutlineEvaluation on the CPU and KNL

• Five Techniques
(1) the degree-skew handling (DSH) for MPS and BMP
(2) the vectorization or instruction-level parallelization (V) for MPS
(3) the task-level parallelization (P) for MPS and BMP
(4) the bitmap range filtering (RF) for BMP
(5) We further evaluate the high bandwidth memory MCDRAM usage

(HBW) on the KNL

2
30

OutlineSummary of Results on the CPU and KNL

• DSH achieve 7x (MPS) and 30x (BMP) speedups over the baseline
• MPS
• V and P bring 79x-84x (CPU) and 183x-186x (KNL) speedups
• HBW brings 1.6x-1.8x speedups over the parallel vectorized MPS

• BMP
• P and RF achieves 25x-28x (CPU) and 47x-83x (KNL)
• HBW brings only 10-20% improvements for the parallel BMP-RF,

which is random access dominant
• CPU favors BMP whereas KNL favors MPS
• BMP works better with CPU’s large caches than KNL
• KNL’s many cores perform the computation of MPS faster than CPU

2
31

OutlineEvaluation on the GPU

• Four techniques:
(1) the co-processing (CP) for MPS and BMP
(2) the multi-pass processing (MPP) for MPS and BMP
(3) the bitmap range filtering (RF) with the shared memory for BMP
(4) The block size tuning (BST) for MPS and BMP

2
32

OutlineSummary of Results on the GPU

• CP reduces 80% of post-processing time on the CPU
• MPP reduces the elapsed time by orders of magnitude for both

algorithms on the large dataset FR (with over 14GB CSR memory)
• RF reduces the time by half
• BST achieves 2.2x-3.8x
• fewer bitmap memory consumption and thus fewer page swaps

• Overall, the GPU favors BMP, because
• BMP has less workload than MPS
• exploits warp-level parallelism
• utilizes GPU resources more effectively than MPS

2
33

OutlineOverall Comparison For Each Platform

• CPU favors BMP
• less workload
• cache-memory hierarchy

• KNL favors MPS
• vectorization
• high bandwidth memory MCDRAM

• GPU favors BMP
• fewer global memory
• warp-level parallelism
• better occupation of GPU resources
• PS kernel inefficient due to irregular memory gathering

2
34

OutlineOverall Comparison Among The Bests

• Comparing CPU-BMP, KNL-MPS and GPU-BMP
• all of them complete within tens of seconds
• the performance differs by a factor of 2.5x at maximum
• on the LJ and OR: all the algorithms complete within 2.3 seconds
• on the WI and TW: GPU-BMP works best
• on the FR: KNL-MPS works best
• CPU-BMP is less competitive but has acceptable performance

2
35

Outline

3、Parallelization & Optimization Techniques

1、Motivation & Problem Statement

2、Our Solution

4、Experimental Study

5、Conclusion

Outline

2
36

OutlineConclusion

• Two Algorithms
• MPS: hybrid merge, scaling better to number of threads
• BMP: amortized indexing cost, involving fewer workloads

• Parallelization and Optimization Techniques
• Algorithm Among Different Processors
• Comparison Among the Bests
• Overall Performance
• Finish within tens of seconds on billion-edge graphs

• Source Codes / Scripts / Figures / More Results:
https://github.com/RapidsAtHKUST/AccTriCnt

• This PPT:
https://www.dropbox.com/sh/i1r45o2ceraey8j/AAD8V3Ww
PElQjwJ0-QtaKAzYa?dl=0&preview=accTriCnt.pdf

• Our Research Group：RapidsAtHKUST
https://github.com/RapidsAtHKUST

End - Q & A

37

Backup Slides: Discussion of MPS and BMP

2
38

• MPS utilizes the hybrid merge with a tunable switching threshold
• PS: O(c times min(d(u), d(v)) cost with an average logarithm of

skip size as the parameter c
• VB: exploits the utilization of SIMD and exploits better memory

access pattern
• BMP has an exact O(min(d(u), d(v)) cost
• MPS has a better memory access pattern than BMP whereas BMP

involves fewer instructions

2
39

OutlineBackup Slides: OpenMP Skeleton of MPS

start offset end offset

1

0

2 3 0 2 0 1 0

off

dst

3 5 7 8

0 1 2 3

end

u < v

u > v

task

task offset

cnt

1) given offset and v, find u;
2) compute only for (u < v);
3) assign cnt[e(u,v)] to cnt[e(v,u)].

u 0 0 0 1 1 2 2 3

2
40

OutlineBackup Slides: Extension for BMP

• Replace the ComputeCntMPS with ComputeCntBMP logic
• Use a thread local bitmap for the index
• Use thread local variable pu to record last indexed or constructed

bitmap B(pu) and clear the bitmap when we process another vertex

41

OutlineBackup Slides: MPS CUDA Kernels

Each warp
processes an edge

Each thread
processes an edge

42

OutlineBackup Slides: BMP CUDA Kernel

Each thread block constructs a
bitmap index B(u)

Each warp processes an edge

A bitmap is acquired from and
released to a pool

43

OutlineBackup Slides: Handling Large Datasets

• Large datasets like FR occupies about 14GB memory for the CSR
representation, which incur huge page swaps

• We introduce multi-pass processing to preserve the data locality (access
of N(v)), avoid thrashing page swaps from the unified memory

44

OutlineBackup: Multi-Pass Processing Optimization

access sequentially

1

0

2 3 0 2 0 1 0

off

dst

3 5 7 8

0 1 2 3

end

u < v

In this pass, for each u in [0,3],
compute IntersectCnt(u,v) for each v in the pass (v in [2, 3))

u > v

cnt

u related memory

v related memory

fixed in the pass
sequential access

current u

• Only compute part of the common neighbor counts of u, in our
example, only for v in the range [2,3) for the current pass
• Preserve the sequential memory access pattern of u
• Limit the range of v in a single pass

45

OutlineBackup Slides： Optimization Techniques

• Vectorization for MPS on the CPU and KNL (discussed)
• AVX2
• AVX512

• Bitmap Range Filtering
• Utilize the sparsity of matches in real-world graphs
• Use a small range bitmap (fit to L1 cache or shared memory) to

filter underlying bitmap access
• MCDRAM (high bandwidth memory) usage on the KNL
• Cache mode
• Flat mode: allocation of CSR and bitmaps on the MCDRAM

• Co-processing to overlap the reversed edge offset assignment on the
CPU and common neighbor counting on the GPU (discussed)

• Multi-pass processing on the GPU to improve the unified memory
access locality (discussed)

• Block size tuning on the GPU (affect memory consumption for BMP
and device SM occupancy for both MPS and BMP)

46

OutlineBackup Slides： GPU Configuration

• By default, we use 4 warps per thread block, resulting in at most 16
(2048/128) concurrent thread blocks per SM. According to the
Nvidia document, 16 is the maximum number of thread blocks
simultaneously scheduled on a SM of the TITAN XP GPU. Our
default setting targets a maximum of 100% occupancy of the GPU.

Backup Slides：Degree Skew Handling

47

CPU

KNL

Backup Slides： Vectorization

48

CPU

KNL

Backup Slides： Scalability (TW)

49

CPU,
TW

KNL,
TW

Backup Slides： Scalability (FR)

50

CPU,
FR

KNL,
FR

Backup Slides： Range Filtering for BMP

51

CPU

KNL

Backup Slides：MCDRAM (KNL)

52

Backup Slides: Summary (CPU & KNL)

53

Backup Slides：Co-Processing

54

Backup Slides：Multi-Pass Processing

55
TW FR

Backup Slides：Bitmap Range Filtering

56

Backup Slides：Effect of Block Size

57

Backup Slides：Conclusion

58

• MPS exploits the vectorization technique, and scales better to number of
threads than BMP; while BMP involves fewer workloads for each neighbor
set intersection than that of MPS.

• The performance of the two algorithms is close on both CPU and KNL, but
may differ up to an order of magnitude on the GPU. MPS works best on the
KNL, because of the 128 VPUs and the high bandwidth memory
MCDRAM. CPU favors BMP, because its L3 cache reduces the memory
access latency. GPU also favors BMP, since the warp-level parallelism helps
utilize the resources.

• BMP on the GPU and MPS on the KNL work best respectively for degree-
skewed and non-degree-skewed large graphs. The performance of both
algorithms on the CPU is moderate, at most 1.9x slower than the best
algorithms on both the KNL and the GPU. MPS on the GPU is always the
slowest, followed by BMP on the KNL.

• Our optimized parallel algorithms complete the computation within tens of
seconds on billion-edge graphs, enabling online graph analytics.

