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ABSTRACT
A common class of graph structural clustering algorithms, pio-

neered by SCAN (Structural Clustering Algorithm for Networks),

not only find clusters among vertices but also classify vertices as

cores, hubs and outliers. However, these algorithms suffer from

efficiency issues due to the great amount of computation required

on structural similarity among vertices. Pruning-based SCAN algo-

rithms improve efficiency by reducing the amount of computation.

Nevertheless, this structural similarity computation is still the per-

formance bottleneck, especially on big graphs of billions of edges.

In this paper, we propose to parallelize pruning-based SCAN algo-

rithms on multi-core CPUs and Intel Xeon Phi Processors (KNL)

with multiple threads and vectorized instructions. Specifically, we

design ppSCAN, a multi-phase vertex computation based parallel

algorithm, to avoid redundant computation and achieve scalability.

Moreover, we propose a pivot-based vectorized set intersection al-

gorithm for structural similarity computation. Experimental results

show that ppSCAN is scalable on both CPU and KNLwith respect to

the number of threads. On the 1.8 billion-edge graph friendster, our

ppSCAN completes within 65 seconds on KNL (64 physical cores

with hyper-threading). This performance is 100x-130x faster than

our single-threaded version, and up to 250x faster than pSCAN, the

state-of-the-art sequential algorithm, on the same platform.
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1 INTRODUCTION
Given an undirected unweighted graph, a structural clustering

algorithm, e.g., the SCAN algorithm [22], deterministically finds
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cores, hubs and their cluster labels based on adjacency and similarity

between vertices. There are two input parameters in SCAN [22],

namely the similarity threshold ϵ and the core threshold µ. Two
adjacent vertices are similar if their similarity value exceeds ϵ , and
a vertex with at least µ similar neighbors is a Core . Clusters are
grown from cores to their similar neighbors, whereas vertices not

in any cluster are further classified into hubs and outliers.

Since SCAN and its variant algorithms are able to identify exact

clusters and classify vertices as cores, hubs and outliers, they have

a number of applications, such as advertising and epidemiology.

However, these algorithms suffer from efficiency issues on massive

graphs, because they require exhaustive similarity computations

among all adjacent vertices with each computation involving a

set-intersection of two vertex arrays [22].

A number of existing algorithms, including sequential algorithms

SCAN++ [18] and pSCAN [6], and parallel algorithms anySCAN

[16] and SCAN-XP [19], have been proposed to accelerate SCAN

[22]. Nevertheless, they either take an excessively long time or run

out of memory on big graphs. For instance, in our experimental en-

vironment, the sequential pSCAN [6] took hours to analyze a twitter

dataset and the sequential SCAN++ [18] could not finish within

24 hours. With parallelization, anySCAN [16] took 10 minutes to

analyze the twitter dataset and ran out of memory (over 64GB) on

the friendster dataset with 1.8 billion edges. Due to the lack of prun-

ing, SCAN-XP [19] took 30 minutes to analyze the twitter dataset,

even though it exploited both thread-level and instruction-level

parallelism. As such, none of the existing algorithms can support

online structural clustering on big graphs.

To address the performance problem, we propose a multi-phase

vertex computation based parallel algorithm. Due to the data and

order dependencies in the sequential pruning-based SCAN algo-

rithm [6], we cannot directly parallelize it. Instead, we decompose

the SCAN computation into two steps, namely role computing, and

core and non-core clustering. To apply pruning techniques, we

further separate each step into multiple phases and parallelize each

phase in a lock-free manner. We bundle vertex computation into

tasks and dynamically schedule tasks with a vertex degree-based

task scheduler. The scheduler estimates workloads based on the

vertex roles and the sum of vertex degrees. When the accumulated

sum exceeds a threshold, a task is submitted, which helps to achieve

load balance at a negligible cost.

In order to speed up the set-intersections for similarity computa-

tion, we propose a pivot-based vectorized set intersection algorithm.

This algorithm reduces condition comparisons and utilizes vector-

ized instructions. Additionally, our set-intersection algorithm keeps

the early-termination optimization introduced by pSCAN [6].

We have implemented our algorithm on both multi-core CPUs

and Intel Xeon Phi Processors Knights Landing (KNL), and evalu-

ated it on various datasets in comparison with a number of existing

https://doi.org/10.1145/3225058.3225063
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algorithms. Our optimized set intersection can achieve speedups of

up to 4x over the original set-intersection algorithm on the twitter

dataset. As a result, our ppSCAN achieved a speedup of over two

orders of magnitude over the sequential pSCAN [6] on KNL, and

is able to support interactive result exploration (with a response

time of under a minute), on billion-edge graphs with a wide range

of parameter values.

2 PRELIMINARY
We consider an unweighted and undirected graphG = (V ,E), define
cores, clusters, hubs and outliers of SCAN [22], and give the problem

statement.

Definition 2.1. The neighborhood of u, denoted as N (u), is de-
fined as:N (u) = {v |v ∈ V∧(u,v) ∈ E}. The closed neighborhood
of u, denoted by Γ(u), is defined as: Γ(u) = N (u) ∪ {u}.

Definition 2.2. The structural similarity predicate between u
and v , denoted by σϵ (u,v), is defined as follows:

σϵ (u,v) = (
|Γ(u)∩Γ(v) |
√
|Γ(u) | |Γ(v) |

≥ ϵ).

This cosine similarity definition is widely adopted by SCAN and

its variants [6, 16, 18, 19, 21, 22, 25, 26]. Denote the degree of u as

d[u], then σϵ (u,v) can be written as: σϵ (u,v) = (|Γ(u) ∩ Γ(v)| ≥

⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉).

Definition 2.3. The ϵ-neighborhood of u, denoted by Nϵ (u), is
defined as: Nϵ (u) = {v |v ∈ Γ(u) ∧ σϵ (u,v)}.

Definition 2.4. The core predicate of u, denoted by Coreϵ,µ (u),
is defined as: Coreϵ,µ (u) = (|Nϵ (u)| ≥ µ + 1).

Definition 2.5. The role of u, denoted by role[u], is labeled as:

Core if Coreϵ,µ (u) is true; otherwise it is NonCore.

Definition 2.6. The direct structural reachability between u
and v , denoted by DSRϵ,µ (u,v), is defined as follows:

DSRϵ,µ (u,v) = (Coreϵ,µ (u) ∧ (v ∈ Nϵ (u))).

Definition 2.7. Given a length l ≥ 1, the vertex sequence, de-
noted byVs , is defined as:Vs = [v0,v1, ...,vi , ...vl−1]where |Vs | = l ,
Vs [i] = vi andvi ∈ V . The structural reachability betweenu and

v , denoted by SRϵ,µ (u,v), is defined as follows:

SRϵ,µ (u,v) = (∃Vs : (|Vs | ≥ 2) ∧ (Vs [0] == u) ∧ (Vs [|Vs | − 1] ==
v) ∧ (∀i ∈[0, |Vs |−1) : DSR(Vs [i],Vs [i + 1]))).

Definition 2.8. The structural connectivity between u and v ,
denoted by SCϵ,µ (u,v), is defined as follows:

SCϵ,µ (u,v) = (∃w ∈V : SRϵ,µ (w,u) ∧ SRϵ,µ (w,v)).

Definition 2.9. A cluster is a set of vertices C that satisfies con-

nectivity and maximality as follows:

• (Connectivity) ∀u,v ∈C : SCϵ,µ (u,v);
• (Maximality) ∀u,v ∈V : (((u ∈ C) ∧ SCϵ,µ (u,v)) → (v ∈ C)).

Definition 2.10. (Hub and Outlier) A vertex u not in any cluster

can be classified into hub or outlier. u is a hub if it satisfies ∃v,w :

(v ∈ N (u)) ∧ (w ∈ N (u)) ∧ (v and w are in different clusters)));

otherwise, it is an outlier.
In this paper, we do not distinguish hubs and outliers, since they

can be found by exploring all the neighbors of vertices not in any

cluster with a time complexityO(|E | + |V |), as stated in pSCAN [6].

Algorithm 1: SCAN [22]

Input: a graph G = (V , E), parameters 0 < ϵ ≤ 1 and µ ≥ 1

Output: roles role , clusters C
1 foreach u ∈ V and role[u] == Unknown do
2 if (role[u] ← CheckCore(u)) == Core then
3 C← C ∪ ExpandCluster (u)
4 Procedure ExpandCluster (u)
5 C = {u }, Q .Push(u)
6 while not Q .I sEmpty() do
7 v ← Q .Pop()
8 foreachw ∈ N (v) and sim[e(v, w )] == Sim do
9 C ← C ∪ {w }

10 if role[w ] == Unknown then
11 if (role[w ] ← CheckCore(w )) == Core then
12 Q .Push(w )
13 return C
14 Procedure CheckCore(u)
15 return |Nϵ (u) | − 1 ≥ µ ? Core : NonCore

Problem Statement. Given a graph G = (V ,E), parameters

0 < ϵ ≤ 1 and µ ≥ 1, compute the roles of all the vertices and the

set C of all the clusters in G.

Definition 2.11. The compressed spare row representation
(CSR) of a graph consists of edge and offset arrays, denoted as dst
and o f f , where dst[o f f [u] : o f f [u + 1]) represents u’s neighbors.
Let e(u,v) denote the offset of edge (u,v), then we have e(u,v) ∈
[o f f [u],o f f [u + 1]) and dst[e(u,v)] = v .

In this paper, we use CSR to represent the input graph where

each vertex u’s neighbors dst[o f f [u] : o f f [u + 1]) are sorted, the
same as in pSCAN [6].

Definition 2.12. The similarity value of an edge (u,v), denoted
by sim[e(u,v)], is labeled as: Sim if σϵ (u,v) is true; otherwise it is
NSim.

3 RELATEDWORK
In this section, we briefly introduce SCAN [22], pSCAN [6] and

other relevant clustering algorithms. In our work, we focus on paral-

lelizing the pruning based SCAN, in specific, the pSCAN algorithm.

3.1 SCAN
Definition 3.1. The structural similarity computation, de-

noted by CompSim(u,v), is to compute sim[e(u,v)]. According to
Definition 2.2, CompSim(u,v) is mainly to compute the intersec-

tion count |Γ(u) ∩ Γ(v)|, since ⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉) is easy to

compute.

Definition 3.2. The core checking computation, denoted by

CheckCore(u), is to determine the role of u, through computing

Nϵ (u). It involves d[u] invocations of CompSim(u,v), after which
sim[e(u,v)] is cached for the later cluster expansion.

Lemma 3.3. The set of all vertices structurally reachable from a
core vertex is a cluster [22].

According to lemma 3.3, SCAN [22] (Algorithm 1), finds aCore u
that is not clustered yet and expands a cluster from {u} in a breadth

first search (BFS). When all the vertices are visited, their roles are

determined and all the clusters are complete.

Theorem 3.4. If the similarity computationCompSim(u,v) adopts
a merge-based set intersection method, the total workload of SCAN’s
structural similarity computations is 2

∑
v ∈V d[v]2.
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Algorithm 2: pSCAN [6]

Input: a graph G = (V , E), parameters 0 < ϵ ≤ 1 and µ ≥ 1

Output: roles role , clusters
1 InitDis jointSets()
2 foreach u ∈ V do
3 sd [u] ← 0, ed [u] ← d [u]
4 foreach u ∈ V in a non-increasing ed [u] order do
5 CheckCore(u)
6 if role[u] == Core then
7 ClusterCore(u)
8 InitCluster Id(), ClusterNonCores()
9 Procedure CheckCore(u)
10 if sd [u] < µ and ed [u] ≥ µ then
11 foreach v ∈ N (u) and sim[e(u, v)] == Unknown do
12 sim[e(v, u)] ← sim[e(u, v)] ← CompSim(u, v)
13 Update sd [u], ed [u], sd [v], ed[v]
14 if sd [u] ≥ µ or ed [u] < µ then
15 break
16 role[u] ← sd [u] ≥ µ ? Core : NonCore
17 Procedure ClusterCore(u)
18 foreach v ∈ N (u) and sd [v] ≥ µ and not I sSameSet (u, v) do
19 if sim[e(u, v)] == Unknown then
20 sim[e(v, u)] ← sim[e(u, v)] ← CompSim(u, v)
21 Update sd [v], ed[v]
22 if sim[e(u, v)] == Sim then
23 Union(u, v)

Proof. EachCompSim(u,v) requires d[u]+d[v] comparisons in

computing the set intersection |Γ(u) ∩ Γ(v)|. A similarity computa-

tion betweenu andv is executed twice: one is forCheckCore(u), and
the other is for its neighbor v’s CheckCore(v). Therefore, the total
workload for exhaustive similarity checking is 2

∑
v ∈V d[v]2. □

3.2 pSCAN
To reduce the amount of similarity computation, pSCAN [6] in-

troduces the following two techniques: 1) min-max pruning and

similarity reuse for the core checking, 2) union-find-set operations

for the core clustering instead of a BFS based cluster expansion

as in SCAN [22]. There are two steps of pSCAN (Algorithm 2): 1)

the core checking and clustering step finalizes roles and clusters

of cores (Lines 4-7); 2) the cluster id initialization and non-core

clustering step produces the final clusters (Line 8).

Lemma 3.5. Each core vertex belongs to only one cluster [6], i.e,
clusters of cores are disjoint.

Based on this lemma, pSCAN proposed to use union-find-set

operations for the core clustering: union-find sets represent clusters

of cores, and union-find operations the clustering of core u.

Definition 3.6. The union-find-set operation consists of the

following: 1) finding the root of u’s set, denoted by FindRoot(u);
2) merging the sets that u and v are in, denoted by Union(u,v). We

define IsSameSet(u,v), to check ifu andv are currently in the same

set: IsSameSet(u,v) = (FindRoot(u) == FindRoot(v)).

Definition 3.7. The cluster id of each union-find-set, denoted

by cluster_id[FindRoot(u)], is the minimum core vertex id in the

union-find-set.

3.2.1 Pruning Techniques. Min-max and similarity reuse tech-

niques were adopted for the core checking; and union-find pruning

was applied for the core clustering.

1) Min-Max Pruning (for the Core Checking). In order to

terminate early in the core checking, pSCAN introduces similar

and effective degrees as follows.

Definition 3.8. The similar and effective degrees of u, denoted
by sd[u] and ed[u] are lower and upper bounds of (|Nϵ (u)| − 1)

(sd[u] ≤ |Nϵ (u)| − 1 ≤ ed[u]). Initially sd[u] = 0, ed[u] = d[u],
updated in the core checking.

pSCAN explores vertices in a non-increasing ed[u] order. There
are two early termination conditions of CheckCore(u):
• (sd[u] ≥ µ): return Core;
• (ed[u] < µ): return NonCore .

2) Similarity Value Reuse (for the Core Checking). For an
undirected graph, the edge between u and v is stored twice (as

(u,v) and (v,u)). However, the similarity predicate values for (u,v)
and (v,u) are the same. Thus, assigning sim[e(u,v)] to the reverse

edge sim[e(v,u)] helps to avoid any redundant computation. The

reverse edge offset computation for the e(v,u) is a binary search

of u in v’s sorted neighbors. After the computation of e(v,u), the
assignment sim[e(v,u)] ← sim[e(u,v)] can be made.

3) Union-Find Pruning (for the Core Clustering). When

coreu and its neighboring corev are already in the same set, further

similarity computations among them can be avoided.

3.2.2 Similarity Computation Optimization. CompSim(u,v) is
to compute the intersection count |Γ(u) ∩ Γ(v)| and check whether

it is greater than or equal to ≥ ⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉). Based on

the definition of structural similarity predicate, early termination

can be made with the intersection count bounds as follows.

Definition 3.9. The intersection count bounds, denoted as du,
dv , cn satisfy cn ≤ |Γ(u)∩Γ(v)| ≤ min(du,dv). Initially du = d[u]+
2, dv = d[v] + 2 and cn = 2, where 2 counts for {u,v}, since simi-

larity computations of pSCAN only happen for adjacent vertices.

There are three early termination conditions of CompSim(u,v):

• (dv < ⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉): return NSim;

• (du < ⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉): return NSim;

• (cn ≥ ⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉): return Sim.

The optimization of CompSim(u,v) takes the same principle as

min-max pruning for CheckCore(u).
Similarity Predicate Pruning. The initial values of intersec-

tion bounds can be used for determining sim[e(u,v)] without any
intersection as follows:

• sim[e(u,v)] ← NSim, if (d[u]+2 < ⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉);

• sim[e(u,v)] ← NSim, if (d[v]+2 < ⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉);

• sim[e(u,v)] ← Sim, if (2 ≥ ⌈ϵ ·
√
(d[u] + 1)(d[v] + 1)⌉).

There are galloping-search based set-intersections [2, 13] and

branch mis-prediction reduction approaches [12]. However, due

to the irregularity of memory access, galloping-search based set

intersections are unsuitable for pSCAN. Branch mis-prediction

reduction approaches can not handle early terminations.

3.3 Other Structural Clustering Algorithms
SCAN++ [18] introduces a data structure called Directly Two-hop

Away Reachable vertices (DTAR) and shares intermediate similari-

ties within DTAR to reduce the workload. However, maintaining

DTAR comes at a high cost. anySCAN [16] grows clusters from
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Figure 1: Time Breakdown of SCAN and pSCAN on the twitter dataset, with µ = 5

super nodes iteratively in parallel and introduces complex vertex

transitions in the expansion phase to reduce the workload. How-

ever, the transitions incur significant dynamic memory allocation

overheads. SCAN-XP [19] conducts exhaustive similarity compu-

tations and exploits both thread-level and instruction-level par-

allelism. GS*-Index [21] constructs an index to support querying

SCAN results given different parameters. However, the indexing

phase involves exhaustive similarity computations, which are pro-

hibitively expensive for massive graphs with large degree vertices.

SparkSCAN [26] and PSCAN [25] are two distributed algorithms,

incurring communication overheads.

Both gSkeleton [11] and SHRINK [10] are parameter-free ex-

tensions of SCAN [22]. LinkSCAN* is an extension of SCAN into

link-space clustering [15]. HintClus [5], DENGRAPH [7], DHSCAN

[23], AHSCAN [24] are other similarity-based hierarchical algo-

rithms but define clusters differently from SCAN. Work on spatial

DB-SCAN [8, 17, 20] is different from SCAN, since spatial data

requires some indexing methods whereas in graphs, the neighbor-

hood already provides filtering power.

Difference. Our work is different from previous work in that

we parallelize the pruning-based SCAN algorithms and design the

vectorized set intersection algorithm with early termination.

3.4 Analysis and Discussions
3.4.1 Performance Bottleneck. In Figure 1, we give the time

breakdown of SCAN [22] and pSCAN [6]. We use the twitter dataset

(|V | = 41.6M and |E | = 684.5M) and set the parameter µ = 5 as in

pSCAN [6]. We make two observations.

• The similarity computation is the performance bottleneck.

In SCAN [22], the total workload of similarity computations is

2

∑
v ∈V d[v]2. In pSCAN, even though the number of similarity

computationCompSim(u,v) is reduced, in a representative case (ϵ =
0.2 and µ = 5), similarity computations are still time-consuming.

• The workload reduction computation of pSCAN is light-

weight and useful, which motivates our parallelization approach.

3.4.2 Challenges in Parallelization. Challenges of exploring task-
parallelism of pSCAN are incurred by the dependencies, and concur-

rency issues. Further, skews in node degrees in real-world networks

pose challenges to the task scheduling. In addition, the early ter-

mination conditions of similarity computations make it difficult to

utilize data-parallelism.

• Order and Data Dependency. 1) During the core checking

and clustering, the non-increasing ed[u] vertex iteration order re-

quires synchronization. 2) Core checking and clustering of neigh-

boring vertices involve concurrent access of sd[u], sd[v], ed[u] and
ed[v]. Specifically, both sd[u] and ed[u] can be modified by u and

its neighbors, which incurs write-write conflict. 3) Owing to the

similarity value reuse technique, similarity values sim[e(u,v)] and
sim[e(v,u)] are dependent. The dependencies lead to possible re-
dundant computation: i) concurrent computation of sim[e(u,v)] and
sim[e(v,u)]; ii) concurrent union operations of e(u,v) and e(v,u),
namelyUnion(u,v) andUnion(v,u).
• Clustering Concurrency Issues. Three operations for the

clustering are required to be thread safe in the concurrent execution.

They are: 1) union-find operations IsSameSet(u,v) andUnion(u,v)
for the core clustering, 2) initializing a cluster id from the union-

find-set data structure, and 3) assigning cluster id to non-cores.

• Workload Skew and Irregularity. The workload of core

checking and clustering of a vertex u’s depends on d[u], and skews

in node degrees occur in real-world networks. Thus, vertex compu-

tations on core checking and clustering are skewed. Also, pruning

techniques of pSCAN make the workload irregular, which poses

challenges on the task scheduling.

• Similarity Computation Vectorization. The early termina-

tion technique for the CompSim(u,v) requires to record number of

matches and mismatches during the set intersection, which makes

it difficult to parallelize via vectorized instructions.

4 PARALLELIZATION
To decouple the dependencies of pSCAN [6], we separate the core

checking and clustering into two big steps as follows: 1) role com-
puting (core checking and consolidating) finalizes the roles of all

vertices; and 2) core and non-core clustering produces final clus-
ters. In addition, inspired by the similarity predicate pruning tech-

nique, we add a pre-processing phase, during which some similarity

values and roles are determined without set intersections.

This section is organized as follows. First, we give an overview

of how we tackle parallelization challenges. Subsequently, we show

the two big steps, namely the role computing (core checking and

consolidating), and the core and non-core clustering. At the end,

we discuss the degree-based dynamic task scheduling.

4.1 Overview
We tackle parallelization challenges of pSCAN [6] as follows.

• sd, ed Dependency Decoupling. 1) We remove the ed[u]
based max priority queue, since it incurs heavy synchronization.

2) We replace sd , ed arrays with local variables for each vertex to

eliminate data races. Local sd , ed for a vertex u can be initialized

from similarity values related to u at a small cost. For removing the

ed[u] based priority queue, we show its effect experimentally on

the workload reduction is negligible .

• Vertex Order Constraints.We add a constraint u < v in the

core checking and clustering to guarantee that each undirected

edge (u,v) is computed at most once for the similarity value and

used at most once for the core clustering.
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Algorithm 3: ppSCAN Role Computing

Input: a graph G = (V , E), parameters 0 < ϵ ≤ 1 and µ ≥ 1

Output: roles role
1 foreach u ∈ V in parallel do
2 PruneSim(u)
3 foreach u ∈ V and role[u] == Unknown in parallel do
4 CheckCore(u)
5 foreach u ∈ V and role[u] == Unknown in parallel do
6 ConsolidateCore(u)
7 Procedure PruneSim(u)
8 foreach v ∈ N (u) do
9 sim[e(u, v)] ← Unkown

10 Update sim[e(u, v)] using the similarity predicate pruning
11 if sim[e(u, v)] == Sim then
12 sd ← sd + 1
13 else if sim[e(u, v)] == NSim then
14 ed ← ed − 1
15 if sd ≥ µ then
16 role[u] ← Core
17 else if ed < µ then
18 role[u] ← NonCore
19 else
20 role[u] ← Unknown
21 Procedure CheckCore(u)
22 foreach v ∈ N (u) do
23 if sim[e(u, v)] == Sim then
24 sd ← sd + 1
25 if sd ≥ µ then
26 role[u] ← Core , return
27 else if sim[e(u, v)] == NSim then
28 ed ← ed − 1
29 if ed < µ then
30 role[u] ← NonCore , return
31 foreach v ∈ N (u) and u < v and sim[e(u, v)] == Unknown do
32 sim[e(v, u)] ← sim[e(u, v)] ← CompSim(u, v)
33 Update sd , ed and role in the same logic as Lines 23-30
34 Procedure ConsolidateCore(u)
35 Do the same as CheckCore(u), except for removing the constraint

u<v in Line 31

• Thread-Safe Clustering. 1) We adopt wait-free union-find

implementations [1] for the core clustering operations. 2) We adopt

compare-and-swap operations for the cluster id initialization. 3) We

adopt a pipelined design in the non-core clustering by overlapping

the computation of local non-core id and cluster id pairs and the

copying back to a global pair array.

•Multi-PhaseComputations.We further decompose big steps

into phases for applying pruning techniques and avoiding workload

redundancy coming from the concurrency. Barriers are introduced

between phases. 1) To apply similarity value reuse and min-max

pruning techniques, we separate the core checking into two phases:

the first does similarity computations only when u < v and the

second consolidates the roles of all vertices. 2) To fully make use of

the union-find pruning technique, we separate the core clustering

into two phases: the first clusters cores without set intersections

whereas the second produces final clusters of cores with set inter-

sections.

•Task Scheduling.We bundle a set of vertex computations into

a task and dynamically submit them into a thread pool, according

to the degrees and current roles of vertices in the task.

4.2 Role Computing
The role computing step (Algorithm 3), which consolidates the

roles of all vertices, is separated into three phases: similarity prun-

ing, core checking and consolidating as follows. 1) The similarity

pruning (Lines 7-20) applies the similarity predicate pruning tech-

nique to determine some similarities without set intersections, at

the end of which the roles are initialized according to the known

similarities. 2) The core checking (Lines 21-33) applies the min-

max pruning technique to check the role[u]. In order to achieve

the similarity reuse and avoid concurrent execution redundancy,

the vertex order constraint u < v is introduced. However, due to

the u < v constraint in the core checking, some roles may not be

known. 3) The core consolidating (Lines 34-35) is for consolidat-

ing these unknown roles, using the same logic as the core checking

except it removes the constraint u < v .

4.2.1 Similarity Pruning. Recall, for each vertex u, we intro-

duce local variables sd , ed to work as lower and upper bounds of

|Nϵ (u)| − 1. The motivation behind introducing the similarity prun-

ing phase is to help initialize some similarities that can be known

without set intersections. At the core checking of u, sd and ed can

be initialized from these known similarities. Thus, we do as few

similarity computations as possible to meet the min-max pruning

termination condition (sd ≥ µ or ed < µ), which yields better

pruning. In the end, some role[u] is updated as Core or NonCore ,
which helps avoid entering into theCheckCore(u) to save iterations
through similarity values (Lines 22-30).

4.2.2 Core Checking and Consolidating. In the core checking,

u’s neighbor v satisfying v < u may update the similarity value

sim[e(u,v)] which is read by u for the sd , ed initialization. Even

though it incurs a read-write conflict, the logic of CheckCore(u)
is still correct. This is because u does not compute similarities

sim[e(u,v)] satisfying v < u, which guarantees sd and ed are up-

dated correctly. Recall, the u < v constraint in the core checking

helps to remove the similarity reuse technique incurs concurrent

redundancy without the order. However, the u < v constraints also

means some roles may be unknown if the termination condition is

not met after the incomplete iteration (Lines 31-33). Thus, the core

consolidating phase is introduced for correctness.

Theorem 4.1. The similarity computation is at most invoked once
for the similarity values sim[e(u,v)] and sim[e(v,u)].

Proof. The similarity computation only occurs in the core check-

ing and consolidating. 1) We show computations do not repeatedly

occur in both phases. IfCompSim(u,v) is invoked in the core check-

ing, then because of the assignment sim[e(v,u)] ← sim[e(u,v)] and
the barrier between phases, core consolidating will not involve any

similarity computation. 2) We show the execution does not occur

concurrently in each phase. During the core checking, this holds be-

cause of the constraint u < v . For the core consolidating, we show
the argument holds by contradiction. The concurrent similarity

computations imply roles of u and v (without the loss of generality,

we assume u < v) are both Unkown before the consolidating, then

sim[e(u,v)]must be known for the core checking of u (see Line 31),

which contradicts the need to compute it. □

Theorem 4.2. Roles of all the vertices are correct and complete
after the core checking and consolidating.

Proof. Access of sim[e(u,v)] does not incur duplicated sd or

ed updates, because of the three different conditions in Lines 23,

27 and 31. Thus, sd and ed are correctly updated, which means
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Algorithm 4: ppSCAN Core and Non-Core Clustering

Input: a graph G = (V , E), parameters 0 < ϵ ≤ 1 and µ ≥ 1, roles role
Output: clusters

1 foreach u ∈ V and role[u] == Core in parallel do
2 ClusterCoreW ithoutCompSim(u)
3 foreach u ∈ V and role[u] == Core in parallel do
4 ClusterCoreW ithCompSim(u)
5 foreach u ∈ V and role[u] == Core in parallel do
6 InitCluster Id(u)
7 foreach u ∈ V and role[u] == Core in parallel do
8 ClusterNonCore(u)
9 Procedure ClusterCoreW ithoutCompSim(u)
10 foreach v ∈ N (u) and role[v] == Core and u < v and

not I sSameSet (u, v) and sim[e(u, v)] == Sim do
11 Union(u, v)
12 Procedure ClusterCoreW ithCompSim(u)
13 foreach v ∈ N (u) and role[v] == Core and u < v and

not I sSameSet (u, v) and sim[e(u, v)] == Unknown do
14 sim[e(u, v)] ← CompSim(u, v)
15 if sim[e(u, v)] == Sim then
16 Union(u, v)
17 Procedure InitCluster Id (u)
18 ru ← F indRoot (u)
19 do
20 min_core_id ← cluster_id [ru]
21 if u ≥ min_core_id then
22 break
23 while not CAS (&cluster_id [ru],min_core_id, u)
24 Procedure ClusterNonCore(u)
25 foreach v ∈ N (u) and role[v] == NonCore do
26 if sim[e(u, v)] == Unknown then
27 sim[e(u, v)] ← CompSim(u, v)
28 if sim[e(u, v)] == Sim then
29 Assign cluster_id [F indRoot (u)] to the NonCore v

role[u] is correct. Due to the core consolidating phase, roles of all

the vertices will be known. Thus, the roles are complete. □

4.3 Core and Non-Core Clustering
The core and non-core clustering step (Algorithm 4), to produce the

final clusters, is separated into four phases: core clustering with and

without similarity computations, cluster id initialization and non-

core clustering as follows. 1) The two-phase core clustering with

and without similarity computation (Lines 9-16) produces clusters

of cores. 2) The cluster id initialization (Lines 17-23) initializes

cluster id for each union-find-set, which uses atomic operations. 3)

The non-core clustering (Lines 24-29) assigns cores’ cluster id to

the similar non-core neighbors to produce the final clusters.

4.3.1 Core Clustering. The core clustering is separated into two
phases for better union-find pruning. In each phase, we add a u < v
constraint to avoid redundant clustering. In the first phase, similar-

ity computations are not involved. After that, some small clusters of

cores are formed among cores, which can be used for the union-find

pruning in the next phase. In the second phase, similarity computa-

tions are conducted to get the complete clusters of cores. During

the core clustering, many cores may occur in the same cluster,

thus the condition not IsSameSet(u,v) can help reduce similarity

computations for unknown edges among these cores.

4.3.2 Non-Core Clustering. Before the non-core clustering stage,
we initialize the cluster id of union-find-sets, which involves atomic

operations over all the cores. After this phase, for each core vertexu,
cluster_id[FindRoot(u)] is u’s cluster id. In the non-core clustering

phase, we assign the cluster id from cores to its similar neighbors.

Algorithm 5: Dynamic Task Scheduling forCheckCore(u)

1 InitThreadPool (), deд_sum ← 0, beд ← 0

2 for u ← 0; u < |V |; u ← u + 1 do
3 if role[u] == Unknown then
4 deд_sum ← deд_sum + d [u]
5 if deд_sum > 32768 then
6 SubmitT askToPool (Task (beд, u + 1))
7 deд_sum ← 0, beд ← u + 1
8 SubmitT askToPool (Task (next_beд, |V |)), JoinThreadPool ()
9 Procedure Task(beд, end )
10 for u ← beд; u < end ; u ← u + 1 do
11 if role[u] == Unknown then
12 CheckCore(u)

Some similarity computations among cores and non-cores occur in

the non-core clustering. We adopt a pipelined design in the non-

core clustering by overlapping the local non-core id and cluster id

pairs’ computing and the copying back to a global pair array.

Definition 4.3. The similar edge is defined as an edge (u,v) ∈ E
that satisfies sim[e(u,v)] == Sim.

Theorem 4.4. Each similar edge is either used for the core cluster-
ing at most once, or for the non-core clustering exactly once.

Proof. Due to the constraint u < v (Lines 10, 13), the cluster

union of u and v occurs once when they are not yet in the same set.

Owning to the logic of non-core clustering being that cores assign a

cluster id to its similar neighboring non-cores, the clustering occurs

exactly once from the core u to the non-core v . □

Theorem 4.5. Clusters are correct and complete after the core and
non-core clustering.

Proof. After the role computing, all the roles are known (Theo-

rem 4.2). Besides, the core and non-core clustering strictly follows

the definition of direct structural reachability, which means the clus-

tering of u and v occurs only when u is a core and sim[e(u,v)] ==
Sim. Thus, the clustering is correct. In the core clustering, all similar

edges where it is possible to force cluster union are explored. In the

non-core clustering, all similar edges among cores and non-cores

are explored. Thus, the final clusters are complete. □

4.4 Degree-Based Dynamic Task Scheduling
To achieve both load balance and small overhead, we use dynamic

estimation of a workload for a single task. We use accumulated de-

gree sum of vertices requiring computations to estimate workloads,

because each vertex computation depends on its role and involves

computations on its neighbors.

We illustrate our task scheduling for the core checking phase

(Algorithm 5) as an example. The scheduling logic also applies

to other vertex computations. A task is represented by a vertex

range pair v_beд and v_end . We wrap the entire task execution

flow as a procedure Task(v_beд,v_end). A worker thread iterates

through vertices in the range [v_beд,v_end) and checks whether

the corresponding vertex computation is required. If it is required

(role[u] == Unknown), then CheckCore(u) is invoked.
The master thread is responsible for constructing and submitting

tasks to the worker thread pool. Initially, the beginning vertex id

for the next task v_next_beд and degree sum deд_sum are both ini-

tialized to 0. The master thread iterates through all the vertices and
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accumulates the degree sumwhen a vertexv requires computations

(role[v] == Unknown). When the degree sum is above the thresh-

old 32768 (tuned for our experimental setting), a task is submitted.

We tune the parameter by multiplying the threshold (originally 1)

by 2 until the workload is not balanced or the task queue maintain-

ing cost is negligible. Correspondingly, deд_sum is reset to 0 and

v_next_beд becomes v + 1. At last, the master thread submits the

remaining task for the completeness and uses JoinThreadPool() to
provide a barrier for synchronization purposes.

The degree-based scheduling has a couple of advantages. Firstly,

worker threads will access adjacent memory locations of the edge

array dst or the edge property arrays sim. Secondly, degree-based

workload estimation introduces little overhead, since we only access

degree array d and conduct addition operations on deд_sum.

5 SET-INTERSECTION VECTORIZATION
We propose the vectorized pivot-based set intersection (Algorithm

6). We explore the data parallelism in finding the next element

in an array satisfying ≥ the pivot and keep the early termination

optimization via the intersection count bounds (Definition 3.9).

Recall, du and dv are upper bounds of |Γ(u) ∩ Γ(v)| and cn is the

lower bound (initially, du = d[u] + 2, dv = d[v] + 2, cn = 2).

Pivot Idea. There are three steps to be repeated until the termi-

nation condition satisfies. 1) We use dst[o f f _v] as the pivot, and
find the first element in dst[o f f _u : o f f [u + 1]) satisfying ≥ the

current pivot dst[o f f _v]. 2) We use dst[o f f _u] as the pivot, and
find the first element in dst[o f f _v : o f f [v + 1]) satisfying ≥ the

pivot dst[o f f _u]. 3) We update cn, o f f _u, o f f _v when we find

a match (dst[o f f _u] == dst[o f f _v]). In addition, to handle the

case that the number of remaining elements in an array is smaller

than 16 (the size of a vector register), we fall back to a pivot-based

CompSimwithout vectorization to get the correct results in all cases.

The logic is similar to the vectorized one, so we skip it.

Early Termination Idea. Intersection boundsdu,dv and cn are

updated respectively at the first, second and third steps. The early

termination condition is checked right after the intersection bound

is updated. There are three cases as follows. 1) When the upper

bound du gets decremented, we check whether du < c satisfactory
to see if we can return NSim. 2) The first case logic also applies

to dv . 3) When the lower bound cn gets incremented, cn ≥ c is

checked to see if we can return Sim. The reasons we can apply the

early termination idea to our pivot-based set intersection are as

follows. 1) cn is only updated in checking the match (step 3). 2)

While finding the next pivot via vectorized comparisons, we can

know exactly the number of elements satisfying < pivot , which
helps correctly update du or dv .

We use the step 1 (Lines 4-15) to illustrate the logic of finding the

next pivot’s offset o f f _u, based on the current pivot dst[o f f _v].
There is a while-loop, with the condition of whether there are ≥

16 u’s neighbors yet to check. The condition is to handle cases

where the remaining element size is less than 16. In the while loop,

we try to find the first o f f _u satisfying dst[o f f _u] ≥ the pivot

dst[o f f _v]. Once we find the offset of the next pivot, we break.

The details of step 1 loop body are as follows. Firstly, we load 16

identical integers dst[o f f _v] into a 512-bit vector register pivot_v
and load 16 integers dst[o f f _u : o f f _u + 16) into another vector

Algorithm 6: Vectorized Pivot-based CompSim(u,v)

Input: u , v , u ’s and v ’s neighbors (sorted arrays)

Output: similarity value of e(u, v)
1 c ←

√
(d [u] + 1)(d [v] + 1), du ← d [u] + 2, dv ← d [u] + 2, cn ← 2

2 of f _u ← of f [u], of f _v ← of f [v]
3 while true do

/* Step1: find the next pivot offset of f _u */

4 while of f _u + 16 < of f [u + 1] do
/* Load 16 identical integers */

5 pivot_v ← _mm512_set1_epi32(dst [of f _v])
/* Load 16 integers */

6 u_eles ← _mm512_loadu_si512(&dst [of f _u])
/* Mask bit is 1 if pivot_v > u_ele, 0 otherwise */

7 mask ← _mm512_cmpдt_epi32_mask (pivot_v, u_eles)
/* Number of elements < pivot_v */

8 bit_cnt ← _mm_popcnt_u32(mask )
9 of f _u ← of f _u + bit_cnt , du ← du − bit_cnt

10 if du < c then
11 return NSim

/* If not all u_ele < pivot_v, we find the of f _u */

12 if bit_cnt < 16 then
13 break
14 if of f _u + 16 ≥ of f [u + 1] then
15 break

/* Step2: find the next pivot offset of f _v */

16 Find the next of f _v , satisfying dst [of f _v] ≥ pivot_u using the
same logic as Lines 4-13

17 if of f _v + 16 ≥ of f [v + 1] then
18 break

/* Step3: if find a match, we update cn, of f _u, of f _v */

19 if dst [of f _u] == dst [of f _v] then
20 cn ← cn + 1, of f _u ← of f _u + 1, of f _v ← of f _v + 1
21 if cn ≥ c then
22 return Sim
23 Fall back to the non-vectorized logic to finish the remaining work

register u_eles . Secondly, we conduct a bit-wise operation (>) to

compare each element inpivot_v to the corresponding one inu_eles
and store the comparison results into a 16-bit variablemask . If the
element in pivot_v is greater than that inu_eles , the corresponding
mask bit is set to 1, otherwise 0. After we count the number of

1-bits inmask , we know how many elements in u_els are less than
dst[o f f _v] and store this value into bit_cnt . Thirdly, when we

know bit_cnt , we advance o f f _u and du, and check if du < c
satisfies for the early termination. Fourthly, we check if we have

already found the first element in u’s neighbors greater than or

equal to the pivot dst[o f f _v]. If we find it, we can break.

There are a couple of advantages using pivot-based vectorized

instructions to find the next element in an array satisfying ≥ the

pivot. Firstly,du anddv are updated less frequently than that in a se-

quential implementation, since they decrease bybit_cnt rather than
1. Secondly, condition comparisons (dst[o f f _u] < dst[o f f _v] and
dst[o f f _u] > dst[o f f _v]) are replaced with vectorized compar-

isons, alleviating the problem of branch mis-predictions.

6 EVALUATION
We compare ppSCAN with the sequential SCAN and pSCAN
[6, 22], and the parallel anySCAN [16], SCAN-XP [19] and our

ppSCAN-NO (without the set-intersection optimization). All the

algorithms are implemented in C++, compiled with -O3 option.

We use two Linux servers (CPU and KNL servers, both with

hyper-threading, supporting AVX2 and AVX512 respectively). The

CPU server has two 10-core 2.3GHz Intel Xeon E5-2650 CPUs (in
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Table 1: Real-world Graph Statistics

Name |V | |E | d max d
orkut 3, 072, 627 117, 185, 083 76.3 33, 312
webbase 118, 142, 143 525, 013, 368 8.9 803, 138
twitter 41, 652, 230 684, 500, 375 32.9 1, 405, 985
friendster 124, 836, 180 1, 806, 067, 135 28.9 5, 214

Table 2: Synthetic Graph Statistics

Name |V | |E | d max d

ROLL-d40 50, 000, 000 999, 999, 600 40 54, 953
ROLL-d80 25, 000, 000 999, 998, 400 80 52, 074
ROLL-d120 16, 700, 000 1, 001, 996, 400 120 52, 472
ROLL-d160 12, 500, 000 999, 993, 600 160 49, 296

total 40 threads). The L1, L2, L3 cache and DRAM of the CPU server

are 64KB, 256KB, 25MB, 64GB respectively. The KNL server has a

64-core 1.3GHz Intel Xeon Phi 7210 CPU (configured in quadrant

mode, in total 256 threads). The L1, L2 cache, MCDRAM (configured

in cache mode) and RAM of the KNL server are 64KB, 1024KB, 16GB,

96GB respectively.

We use four representative real-world graphs (Table 1) from

SNAP [14] and WebGraph [3, 4]. We use synthetic ROLL graphs

[9] with 1 billion edges and various average degrees (Table 2). By

default, we fix µ = 5 and vary ϵ ∈ [0.1, 0.9], since the results under
different µ values show similar trends. To support this observation,

we include a performance study with µ varied in {2, 5, 10, 15}. For

parallel algorithms, by default, we use 64 and 256 threads for the

CPU and KNL servers respectively. In the scalability experiment,

we vary the number of threads in {1, 2, 4, 8, 16, 32, 64, 128, 256}.

6.1 Overall Performance
We compare ppSCAN with SCAN [22], pSCAN [6], anySCAN [16]

and SCAN-XP [19]. Both SCAN and pSCAN are sequential algo-

rithms, whereas ppSCAN, anySCAN and SCAN-XP are parallel. We

fix µ = 5 and vary the datasets and ϵ . We measure the in-memory

processing time for each algorithm. We repeat each execution three

times and report the best run for each algorithm since the time

variance among runs is small. If an algorithm incurs a runtime error

(RE) or time-limit-exceeded (TLE, with time limit 90 minutes), we

stop the execution. We show results on both CPU and KNL servers

(Figures 2 and 3). anySCAN incurs runtime errors in the webbase

and friendster datasets due to running out of memory. Both SCAN

and pSCAN incur TLE on the KNL server. In all cases, SCAN is

slower than pSCAN.

In most cases, ppSCAN is 26x-51x faster than pSCAN on the CPU

and 98x-442x faster on the KNL. In cases such as the twitter dataset

with ϵ = 0.8, the memory access bounds the speedup of ppSCAN

to tens. However, such cases are acceptable, since the in-memory

processing of ppSCAN can be done within a few seconds.

On the orkut dataset, ppSCAN is 6x-8x faster than anySCAN

on the CPU and 5x-9x faster on the KNL. On the twitter dataset,

ppSCAN is 8x-34x faster on the CPU and 17x-43x faster on the KNL.

The speedups are a result of ppSCAN better exploring memory ac-

cess patterns and incurring negligible overhead for task scheduling.

The scalability of ppSCAN is also better than anySCAN.

ppSCAN does less work than SCAN-XP: SCAN-XP conducts

exhaustive computations regardless of the ϵ value, whereas the

workload of ppSCAN decreases when ϵ increases. Thus, ppSCAN
is faster than SCAN-XP in all cases. On the twitter dataset, due to

the lack of pruning, SCAN-XP is 47x-204x slower on the CPU and

47x-125x slower on the KNL than our ppSCAN.

6.2 Set-Intersection Performance
6.2.1 Invocation Reduction. We compare the normalized num-

ber of set-intersection invocations (number of invocations divided

by |E |) between pSCAN and ppSCAN. We fix µ = 5 and vary

datasets and ϵ . Experimental results (Figure 4) show that ppSCAN

and pSCAN conduct a similar amount of work. When we vary µ,
results show similar trends. Due to the limited space, we omit the

results with µ varied.

6.2.2 Vectorization Improvement. We compare the core check-

ing time between ppSCAN and ppSCAN-NO (without vectoriza-

tion), since core checking involves the majority of set intersections.

We fix µ = 5 and vary the datasets and ϵ . We show the speedups of

core checking with our pivot-based vectorized set-intersection on

both the CPU and the KNL servers (Figure 5).We have a couple of ob-

servations. Firstly, with ϵ increasing, the benefits of set-intersection
optimization decreases. This phenomenon is because at a large ϵ ,
we make fewer advances of offsets in an array to find the first ele-

ment greater than or equal to the pivot. However, in this case, a lot

of workload is pruned. Secondly, the speedup on the KNL is better

because the AVX512 instructions on the KNL support operating

twice the number of bits per instruction than that of the AVX2

instructions on the CPU. In summary, this optimization works well

with large datasets given a small ϵ , and achieves up to 4.5x and 3.5x

speedup on the KNL and the CPU servers.

6.3 Scalability to Number of Threads
We fix µ = 5 , ϵ = 0.2 , vary the number of threads and show

the time breakdown of ppSCAN’s four stages (Figure 6). On the

orkut, twitter and friendster datasets, core checking takes the most

time in ppSCAN, which is about one order of magnitude more than

pruning and two orders of magnitude more than core and non-core

clustering. On the webbase dataset, due to the powerful pruning

(Figure 4(b)), core checking is not dominant. All stages scale well

on the 64-core KNL server (256 threads, hyper-threading). In most

cases, the speedup of core checking is better than the other stages

because the computations from set intersections hide the memory

access latency. Also, since core and non-core clustering involves

concurrent lock-free operations on union-find-sets, the overhead

increases with the number of threads. Specifically, given 256 threads,

the speedups on core checking for orkut, webbase, twitter, friendster

datasets are respectively 102x, 26x (memory bound), 132x and 143x

respectively, and speedups of all four stages for these four datasets

are 72x, 28x, 125x and 131x respectively.

6.4 Robustness
6.4.1 Varying Parameters µ and ϵ on Real-World Graphs. We

vary datasets, µ and ϵ and show ppSCAN runtime for all the cases

(Figure 7). On the orkut, twitter and friendster datasets, with dif-

ferent µ values, the runtime shows similar trends. In the case of

ϵ = 0.1, runtime with µ = 15 becomes a little bit more than with

µ = 2 due to less pruning. On the webbase dataset, the trends in

the runtime with ϵ varied become slightly different with µ. When

µ is 2, it takes longer, because there are many cores, which increase
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Figure 2: Comparison with existing algorithms (on CPU), µ = 5
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Figure 3: Comparison with existing algorithms (on KNL), µ = 5
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the clustering time. In summary, ppSCAN is robust given different

combinations of datasets, µ and ϵ . The vertex degree based task

scheduling is important for the performance robustness under dif-

ferent parameters since workloads and parameters influence both

load balance and scheduling overheads. Our lock-free design makes

it easy to achieve robust scheduling.

6.4.2 Varying d on Synthetic ROLL Graphs. We also evaluate

the performance of ppSCAN on synthetic ROLL graphs [9]. We

generate four 1 billion-edge ROLL graphs with average degrees

respectively 40, 80, 120 and 160. We fix µ = 5 and vary ϵ and

datasets. We report both runtime and self-speedup (over ppSCAN

with 1 thread) on both CPU and KNL servers (Figure 8). The runtime

for graphs of larger degrees is greater than that of smaller degree

graphs. However, we can finish the in-memory processing for all

cases within 60 seconds on the CPU server and 35 seconds on the

KNL server. With ϵ increasing, the runtime for graphs of different

degrees gets close to each other. This is because the core checking

takes less in the total computation. On the CPU server, we can

achieve 25x-35x speedups in all cases. However, the speedups on

the KNL server decrease sharply at ϵ = 0.8. This is because the

computations of core checking takes too little time to hide the

memory access time. However, the performance is acceptable, since

the runtime is already under 5 seconds.

7 CONCLUSION
We parallelize the state-of-the-art pruning-based graph cluster-

ing algorithm pSCAN. Our parallel algorithm ppSCAN consists of

multi-phase lock-free vertex computations, which are dynamically

bundled into a task and scheduled based on vertex degrees and roles.

Moreover, we propose a pivot-based vectorized set intersection algo-

rithm to optimize the performance bottleneck. Experimental results

show that ppSCAN computes similar workloads to pSCAN, scales

well to the number of threads and is robust given different datasets

and parameters. In most cases on the KNL server, ppSCAN is two

orders of magnitude faster than pSCAN and one order of magnitude

faster than the parallel anySCAN and SCAN-XP.

8 ACKNOWLEDGEMENT
This work was partly supported by grants 16206414 from the Hong

Kong Research Grants Council and MRA11EG01 from Microsoft.

REFERENCES
[1] Richard J Anderson and Heather Woll. 1991. Wait-free parallel algorithms for the

union-find problem. In Proceedings of the twenty-third annual ACM symposium
on Theory of computing. ACM, 370–380.

[2] Jérémy Barbay, Alejandro López-Ortiz, and Tyler Lu. 2006. Faster adaptive set

intersections for text searching. In International Workshop on Experimental and
Efficient Algorithms. Springer, 146–157.

[3] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

Label Propagation: AMultiResolution Coordinate-Free Ordering for Compressing

Social Networks. In Proceedings of the 20th international conference on World Wide
Web, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,

Elisa Bertino, and Ravi Kumar (Eds.). ACM Press, 587–596.

[4] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-

pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[5] Dustin Bortner and Jiawei Han. 2010. Progressive clustering of networks using

structure-connected order of traversal. In Data Engineering (ICDE), 2010 IEEE
26th International Conference on. IEEE, 653–656.

[6] Lijun Chang, Wei Li, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. pSCAN: Fast

and exact structural graph clustering. In 32nd IEEE International Conference on
Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016. 253–264.

[7] Tanja Falkowski, Anja Barth, and Myra Spiliopoulou. 2007. Dengraph: A density-

based community detection algorithm. In Web Intelligence, IEEE/WIC/ACM Inter-
national Conference on. IEEE, 112–115.

[8] Markus Götz, Christian Bodenstein, and Morris Riedel. 2015. HPDBSCAN: highly

parallel DBSCAN. In Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments. ACM, 2.

[9] Ali Hadian, Sadegh Nobari, Behrooz Minaei-Bidgoli, and Qiang Qu. 2016. ROLL:

Fast in-memory generation of gigantic scale-free networks. In Proceedings of the
2016 International Conference on Management of Data. ACM, 1829–1842.

[10] Jianbin Huang, Heli Sun, Jiawei Han, Hongbo Deng, Yizhou Sun, and Yaguang

Liu. 2010. SHRINK: a structural clustering algorithm for detecting hierarchical

communities in networks. In Proceedings of the 19th ACM international conference
on Information and knowledge management. ACM, 219–228.

[11] Jianbin Huang, Heli Sun, Qinbao Song, Hongbo Deng, and Jiawei Han. 2013.

Revealing density-based clustering structure from the core-connected tree of

a network. IEEE Transactions on Knowledge and Data Engineering 25, 8 (2013),

1876–1889.

[12] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. 2014. Faster set intersection

with simd instructions by reducing branch mispredictions. Proceedings of the
VLDB Endowment 8, 3 (2014), 293–304.

[13] Daniel Lemire, Leonid Boytsov, and Nathan Kurz. 2016. SIMD compression and

the intersection of sorted integers. Software: Practice and Experience 46, 6 (2016),
723–749.

[14] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[15] Sungsu Lim, Seungwoo Ryu, Sejeong Kwon, Kyomin Jung, and Jae-Gil Lee. 2014.

LinkSCAN*: Overlapping community detection using the link-space transfor-

mation. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on.
IEEE, 292–303.

[16] Son T Mai, Martin Storgaard Dieu, Ira Assent, Jon Jacobsen, Jesper Kristensen,

and Mathias Birk. 2017. Scalable and Interactive Graph Clustering Algorithm

on Multicore CPUs. In Data Engineering (ICDE), 2017 IEEE 33rd International
Conference on. IEEE, 349–360.

[17] Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik

Manne, and Alok Choudhary. 2012. A new scalable parallel DBSCAN algorithm

using the disjoint-set data structure. In Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press, 62.

[18] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2015. SCAN++:

efficient algorithm for finding clusters, hubs and outliers on large-scale graphs.

Proceedings of the VLDB Endowment 8, 11 (2015), 1178–1189.
[19] Tomokatsu Takahashi, Hiroaki Shiokawa, and Hiroyuki Kitagawa. 2017. SCAN-

XP: Parallel Structural Graph Clustering Algorithm on Intel Xeon Phi Coproces-

sors. In Proceedings of the 2nd International Workshop on Network Data Analytics.
ACM, 6.

[20] Benjamin Welton, Evan Samanas, and Barton P Miller. 2013. Mr. scan: Extreme

scale density-based clustering using a tree-based network of gpgpu nodes. In

Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. ACM, 84.

[21] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2017. Efficient

Structural Graph Clustering: An Index-Based Approach. Proceedings of the VLDB
Endowment 11, 3 (2017).

[22] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. 2007. Scan:

a structural clustering algorithm for networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,

824–833.

[23] Nurcan Yuruk, Mutlu Mete, Xiaowei Xu, and Thomas AJ Schweiger. 2007. A

divisive hierarchical structural clustering algorithm for networks. In Data Mining
Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on.
IEEE, 441–448.

[24] Nurcan Yuruk, Mutlu Mete, Xiaowei Xu, and Thomas AJ Schweiger. 2009. AH-

SCAN: Agglomerative hierarchical structural clustering algorithm for networks.

In Social Network Analysis andMining, 2009. ASONAM’09. International Conference
on Advances in. IEEE, 72–77.

[25] Weizhong Zhao, VenkataswamyMartha, and Xiaowei Xu. 2013. PSCAN: a parallel

Structural clustering algorithm for big networks in MapReduce. In Advanced
Information Networking and Applications (AINA), 2013 IEEE 27th International
Conference on. IEEE, 862–869.

[26] Qijun Zhou and Jingbin Wang. 2015. SparkSCAN: A Structure Similarity Clus-

tering Algorithm on Spark. In National Conference on Big Data Technology and
Applications. Springer, 163–177.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Preliminary
	3 Related Work
	3.1 SCAN
	3.2 pSCAN
	3.3 Other Structural Clustering Algorithms
	3.4 Analysis and Discussions

	4 Parallelization
	4.1 Overview
	4.2 Role Computing
	4.3 Core and Non-Core Clustering 
	4.4 Degree-Based Dynamic Task Scheduling

	5 Set-Intersection Vectorization
	6 Evaluation
	6.1 Overall Performance
	6.2 Set-Intersection Performance
	6.3 Scalability to Number of Threads
	6.4 Robustness

	7 Conclusion
	8 Acknowledgement
	References

