
Parallelizing Recursive Backtracking Based
Subgraph Matching on a Single Machine

Shixuan Sun
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
ssunah@cse.ust.hk

Qiong Luo
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
luo@cse.ust.hk

Abstract—We propose PSM, an algorithmic framework to
parallelize a common class of subgraph matching algorithms,
which are based on recursive backtracking. Specifically, we
abstract the matching process as a tree search in the state space
and different matching algorithms as different orders in the
search. Subsequently, we parallelize such subgraph matching by
dividing up the state space search tree and exploring it in parallel.
Different from traditional approaches that parallelize the search
by each individual state, we dynamically split the state tree into
search regions each of which consist of a subtree. We further
optimize PSM for load balance and communication efficiency. As
case studies, we have parallelized three representative recursive
backtracking based subgraph matching algorithms in PSM and
studied their performance in comparison with their sequential
counterparts. Our results show that the PSM-style parallel
algorithms achieved a speedup of 15X-19X on the in-memory
execution time on a twenty-core machine.

Index Terms—graph, subgraph isomorphism, recursive back-
tracking, parallel subgraph matching, multi-core CPUs

I. INTRODUCTION

Given a labeled data graph G and a labeled query
graph q, subgraph matching finds all subgraph isomorphisms
from q to G. For example, given q and G in Figure 1,
{(u1, v1), (u2, v2), (u3, v3), (u4, v4)} is a subgraph isomor-
phism. As a basic type of graph queries, subgraph matching is
widely used in real world applications such as computer aided
design [7], protein interaction relationship detection [5], social
network analysis [27] and RDF queries [29].

The subgraph matching problem is NP-hard [16], and a va-
riety of sequential algorithms [4], [6], [8], [9], [22], [24], [28]
have been proposed to solve this problem. All these algorithms
adopt a recursive backtracking strategy proposed by Ullmann
[26] in 1976, which recursively expands partial results along
an order of query vertices by mapping a query vertex to a
data vertex at each step to find all subgraph isomorphisms,
and focus on designing powerful filtering rules to eliminate
invalid candidate data vertices of each query vertex as many
as possible and generating effective matching orders to reduce
the search space. However, due to the hardness of the subgraph
matching problem, these algorithms often take a long time to
process big data graphs and complex queries.

In order to further improve the performance of subgraph
matching, a natural idea is to accelerate the processing by
parallelization, because a commodity machine nowadays has

A

B C

C

1u

2u 4u

3u

(a) Query graph q.

A

B C

C

A

B

D

D

D

B

1v

2v

3v 6v 9v

4v v７ 10v

5v 8v

(b) Data graph G.

Fig. 1: Subgraph isomorphism.

considerable parallel computation capabilities. Recently, some
parallel algorithms working on a single machine, such as
PGX.ISO [18] (denoted PGX in short) and parallel RI [11]
(denoted pRI in short), have been proposed to utilize the multi-
threading technique provided by multiple cores in modern
CPUs. Both algorithms take partial results as the basic task
units. However, due to the exponential number of partial
results in the search space, PGX easily runs out of memory,
whereas pRI’s speedup over the sequential RI [5] is limited to
less than 10 times on a machine of 16 CPU cores. Moreover,
several performance studies find that there is no single winner
among existing sequential subgraph matching algorithms [10],
[14], because the matching orders generated by existing algo-
rithms are based on different heuristics. Therefore, we explore
a parallelization approach that is orthogonal to the heuristics.

In this paper, we propose to parallelize the backtracking
based subgraph matching algorithms in a shared-memory
environment, such as a multicore machine. Specifically, we
abstract these algorithms into a uniform model and present
a generic Parallel Subgraph Matching (PSM) algorithm. PSM
serves as a template to parallelize existing sequential subgraph
matching algorithms. Furthermore, users can develop new
subgraph matching strategies in PSM without worrying about
the parallelization. The resulting algorithms can exploit the
parallel processing capability of the multicore machines as
well as benefit from the state-of-the-art subgraph matching
strategies.

We consider three challenges to design such a framework.
The first challenge is to abstract different kinds of backtrack-
ing subgraph matching algorithms to a uniform model. The
second is to determine a suitable granularity of parallelism.



Existing parallel approaches for a single machine [11], [18]
or a distributed environment [23] utilize the independence
between partial results to achieve a high parallelism. However,
the exponential number of partial results can take up all
memory available on a single machine. The last challenge is to
achieve load balance and reduce overhead introduced by par-
allelization, as these factors have a great performance impact,
especially with various data sets and different algorithms.

Addressing the three challenges, we make the following
contributions in this paper.
• We abstract the exploration procedure of existing back-

tracking subgraph matching algorithms into a depth-first
search (DFS) of a state space tree generated on the fly.
We further analyze the properties of the search space.

• We propose a generic parallel subgraph matching frame-
work, named PSM, based on the state space tree search
to parallelize existing backtracking subgraph matching
algorithms.

• We design a search region based dynamic task split
strategy and an action replay technique, to achieve load
balance and reduce overhead caused by parallelization in
PSM.

• We parallelize three state-of-the-art subgraph matching
algorithms following the PSM framework and conduct
detailed experiments on a variety of real datasets. The ex-
perimental results show that the PSM algorithms achieves
a speedup of 15X-19X over their sequential versions on
a twenty-core machine.

Paper Organization. Section II presents preliminaries and
related work. Section III introduces the state space tree model.
Section IV presents the parallel subgraph matching (PSM)
framework. We evaluate the performance of PSM in Section
V and conclude in Section VI.

II. BACKGROUND

In this section, we first present the preliminaries used in this
paper and then introduce the related work.

A. Preliminaries

In this paper, we focus on the vertex-labeled undirected
graph g = (V,E,Σ, L), where V is a set of vertices, E is
a set of edges, Σ is a set of labels, and L is a function that
associates a vertex v with a label L(v) ∈ Σ. Moreover, the
query graph q is connected and the data graph G is much
bigger than q (i.e., |V (G)| � |V (q)|). Next, we give a formal
definition of subgraph matching and related preliminaries used
in this paper, and summarize the frequently used notations in
Table I.

Definition 1: Subgraph Isomorphism: Given a query graph
q = (V,E,Σ, L) and a data graph G = (V

′
, E

′
,Σ

′
, L

′
), a

subgraph isomorphism is an injective function f : V → V
′

that satisfies:
(1). ∀u ∈ V,L(u) = L

′
(f(u));

(2). ∀e(u, v) ∈ E,∃e(f(u), f(v)) ∈ E′
.

Definition 2: Subgraph Matching: Given q and G, find all
subgraph isomorphisms from q to G.

TABLE I: Notations.
Notations Descriptions
g, q, G graph, query graph and data graph
V (g), E(g) vertex set and edge set of g
d(u), L(u), N(u) degree, label and neighbors of u
e(u, v) edge between u and v
S partial result (i.e., state)
H , H(S) state space tree and subtree rooted at S
π matching order
C(S, u) candidate set of u given S
H(S, [i : j]) search region
Nπ

+(u) backward neighbors of u in π
n number of workers
qπi vertex induced subgraph of q on π[1 : i]
α, β cutoff depth and cutoff width

Definition 3: Matching Order: Given q, a matching order π
is a permutation of the vertices in V (q). π[i] is the ith vertex
in π and π[i : j] is the set of vertices from index i to j in π.

Definition 4: Backward Neighbors: Given q and π, suppose
that u ∈ π. The backward neighbors of u, denoted as Nπ

+(u),
is the neighbors of u positioned before u in π.

Given q and π, qπi denotes the vertex induced subgraph
of q constructed on π[1 : i]. In order to reduce the search
space, existing subgraph matching algorithms require that the
matching order π satisfies that ∀1 ≤ i ≤ |V (q)|, qπi is a
connected graph. Equivalently, given any vertices u in π except
π[1], Nπ

+(u) 6= ∅. Therefore, we also assume that π satisfies
such a constraint in this paper.

Assumptions. In summary, we have the following three
assumptions in this paper.

1) The query graph q is connected.
2) The matching order π is connected (i.e., given any

vertices u in π except π[1], Nπ
+(u) 6= ∅).

3) |V (G)| � |V (q)|.

B. Related Work

As a fundamental graph querying operation, subgraph
matching receives a lot of research interests.

1) Sequential Algorithms: Existing sequential subgraph
matching algorithms follow the same enumeration process that
expands partial results recursively along an order of query
vertices, but have different strategies to prune the invalid
candidate data vertices and optimize the matching order.
Ullmann [26], VF2 [6], QuickSI [22], SPath [28] and RI
[5] obtain the candidate data vertices of each query vertex
individually based on filters such as the label/degree filter
and the neighborhood signature. In contrast, GraphQL [9],
TurboIso [8] and CFL [4] build an auxiliary data structure
before the enumeration and conduct the enumeration process
based on the auxiliary data structure instead of the original
data graph. These algorithms also adopt different ordering
techniques to generate matching orders. Specifically, QuickSI
designs an infrequent-label first strategy and GraphQL pro-
poses the left-deep join based method. SPath, TurboIso and
CFL utilize the path based ordering method, whereas RI
uses the constraint based approach. For brevity, we omit the
details of these algorithms, because our focus is to parallelize



the enumeration process instead of designing new pruning
strategies and ordering methods. Interested readers can refer
to the recent performance studies [10], [14] for the details of
these algorithms.

In addition, some researchers boost subgraph matching by
exploiting the vertex relationship in the data graphs [15], [20]
and utilizing the matching results among multiple queries [21].

2) Parallel Algorithms: Compared with the extensive re-
search on the sequential algorithms, the research on the
parallel subgraph matching algorithms working on multicore
CPUs is rather limited. PGX [18] takes each partial result as
the basic task unit and expands partial results iteratively along
an order of query vertices, which is a parallel breadth-first
search approach with the bulk synchronous parallel model.
As a result, it requires to store all intermediate results at
each step. On a single machine, this method easily blows up
memory. pRI [11] parallelizes the RI algorithm [5], which is a
sequential algorithm developed in 2013. pRI also uses partial
results as the task units. Each worker (i.e., thread) maintains
a private deque to store its partial results (i.e., tasks). During
the execution, the worker first fetches a partial result from the
head of its own deque, then expands the partial result, and
finally adds the generated partial results into the head of its
own deque. If a worker is idle, then it will steal tasks from
the tail of the deque of other workers. Fetching and adding
tasks from the deque requires lock operations to avoid the
race condition. Because of the exponential number of partial
results, the frequent lock operations incur significant overhead.

Additionally, STwig [24] works on the distributed envi-
ronment, whereas GpSM [25] runs on GPUs. Both of them
convert the subgraph matching problem into the join problem.

3) Other Related Work: Subgraph enumeration is to find all
subgraph isomorphisms in unlabeled graphs. Due to the lack of
label, the search space of subgraph enumeration is very large
and subgraph enumeration is more challenging than subgraph
matching. The latest research on this problem focuses on
designing parallel distributed approaches such as Afrati [3],
TwinTwig [12], SEED [13], PSgL [23], Crystal [17]. In
addition to the difference on the presence of labels, subgraph
matching is generally integrated as a query operation in a
graph database such as Neo4j, whereas subgraph enumeration
is generally an offline analytic task [23].

III. THE STATE SPACE TREE

In this section, we first abstract backtracking subgraph
matching algorithms into an exploration of a state space tree,
and then analyze the properties of the tree.

A. State Space Tree Exploration

Algorithm 1 presents the enumeration procedure proposed
by Ullmann [26], which is used in existing sequential subgraph
matching algorithms. It takes q and G as input and outputs
all subgraph isomorphisms from q to G. Line 2 generates
a matching order π, and S records mappings from query
vertices to data vertices, called the partial result in this
paper. In particular, S.keys and S.values denote the query

Algorithm 1: Sequential Subgraph Matching
Input: a query graph q and a data graph G
Output: all subgraph isomorphisms from q to G

1 begin
2 π ← GenerateMatchingOrder(q,G);
3 S ← {}, i← 1;
4 Enumerate(S, i, π, q,G);

5 Procedure Enumerate(S, i, π, q,G)
6 u← π[i];
7 C(S, u)← GenerateCandidateSet(S, u, q,G);
8 foreach v ∈ C(S, u) do
9 if IsFeasible(S, u, v,G) = true then

10 S′ ← S ∪ {(u, v)};
11 if i = |π| then Output S′;
12 else Enumerate(S′, i+ 1, π, q,G);

13 Function IsFeasible(S, u, v,G)
14 if v /∈ S.values and ∀u′ ∈ Nπ

+(u), e(S[u
′], v) ∈ E(G)

then return true;
15 return false;

vertices and data vertices in S respectively. Line 7 generates
a candidate set C(S, u), which stores the data vertices that
can be mapped to u to extend S. Existing subgraph matching
algorithms propose a variety of approaches to minimize the
size of C(S, u). For simplicity, in this paper, we assume that
a data vertex v ∈ C(S, u) at least satisfies that L(v) = L(u)
and d(v) ≥ d(u). Lines 8-12 loop over C(S, u) to extend
S. If v has not been mapped and there are edges between v
and the data vertices mapped to the backward neighbors of u
(Lines 13-15), then we extend S by mapping u to v. Otherwise,
we skip v. If all query vertices have been mapped, then line
11 outputs S′. Otherwise, line 12 invokes the Enumerate
procedure recursively.

Given a partial result S generated in Algorithm 1 that
contains i mappings, S is a subgraph isomorphism from
qπi to G because the candidate set ensures that ∀u ∈
S.keys, L(u) = L(S[u]) and the IsFeasible function guar-
antees that ∀e(u, u′) ∈ E(qπi ), e(S[u], S[u′]) ∈ E(G). In par-
ticular, we denote S as Sr when S is empty. The Enumerate
procedure conceptually constructs a state space tree H on the
fly. It starts from Sr and always extends the most recently
generated partial results for the following step. In other words,
it explores H by the depth-first search.

The initial state of H is Sr and the internal states are the
partial results generated during the enumeration. The edges
of H correspond to mappings between query vertices and
data vertices. The leaves are terminations of search paths
originated from the initial state, which can be categorized into
two classes: the success leaves with i = |π| at line 11, and
the failure leaves with IsFeasible returning false. All the
success leaves are the solutions of subgraph matching. There
are one to one relationships from internal states and success
leaves to partial results. Therefore, we also denote the state in
H as S. In contrast, the failure leaves are not states.

Example 1: Figure 2 shows the state space tree H generated
by Algorithm 1 on the graphs in Figure 1. Suppose that π =





 



 


 



 


 



 

rs

1s 2s

11s 22s

111s

1111s

21: v 72 : v

52 : v
11: v

72 : v

31: v 42 : v

21: v

31: v 42 : v

41: v

1[1] :u

2[2] :u

3[3] :u

4[4] :u

Fig. 2: H generated by Algorithm 1 on graphs in Figure 1.

(u1, u2, u3, u4). Take the state S22 : {(u1, v5), (u2, v7)} as an
example. The next query vertex in π is u3. Thus, C(S22, u3) =
{v3, v4}. The Enumerate procedure explores H in the DFS
order, and finds all solutions, which is the following in this
example: S1111 = {(u1, v1), (u2, v2), (u3, v3), (u4, v4)}.

Remark. Existing recursive backtracking subgraph match-
ing algorithms adopt the same enumeration process as Al-
gorithm 1 with differences in the strategies to generate the
matching order (i.e., the GenerateMatchingOrder func-
tion) and the methods to obtain the candidate sets (i.e., the
GenerateCandidateSet function).

B. Properties of the State Space Tree

Given q and G, search paths are terminated if IsFeasible
returns false or all query vertices in π have been mapped.
Suppose that the depth of Sr in H is 0. Thus, the depth of
H is at most |π|. Moreover, suppose that Hi contains all the
states at depth i (0 ≤ i < π) and the average branching factor
of states in Hi is bi. Then, we have the following equation.

|Hi| =
{

1 i = 0.∏i−1
j=0 bj 0 < i ≤ |π|. (1)

In the following, we discuss the value of the branching
factor. Given S ∈ Hi (0 < i < π) and u = π[i + 1],
the Enumerate procedure loops over C(S, u) to extend S.
Suppose that Φ(S) is the set of partial results derived from S
by mapping u to v ∈ C(S, u). Then, the branching factor of S
denoted as bS is equal to |Φ(S)|. Recall that S is a subgraph
isomorphism from qπi to G and S′ ∈ Φ(S) is a subgraph
isomorphism from qπi+1 to G. According to Definition 1
and 4, bS is less than or equal to minu′∈Nπ

+
(u) d(S[u′]).

As a result, bS is affected by the degree of data vertices
mapped to the backward neighbors of u. Given the various
degrees of data vertices, the branching factors of states can
be very different. Therefore, H is irregular. Moreover, the
multiplication over the average branching factors in Equation
1 indicates that H can contain an exponential number of
states. b0 is the branching factor of Sr. As Sr contains no
mappings and Nπ

+(π[1]) = ∅, each data vertex v that satisfies
L(v) = L(π[1]) and d(v) ≥ d(π[1]) can be mapped to π[1].
Therefore, the size of the data graph has an important effect
on b0, which is different from the branching factors of the
other states. Additionally, |V (q)| generally scales from 3 to
tens of vertices, whereas |V (G)| ranges from thousands to

millions even billions. Let |Hmax| = max
0≤i≤π

{|Hi|} and we

have |π| � |Hmax|, which means that the state space tree H
is flat.

In summary, given q and G, Algorithm 1 constructs an
irregular and flat state space tree H that can contain an
exponential number of states. Because H is constructed on
the fly and branching factors depend on the properties of q
and G as well as the methods generating matching orders
and candidate sets, it is hard to quantify the exact value of
branching factors and the size of H in advance.

IV. PARALLEL SUBGRAPH MATCHING FRAMEWORK

In this section, we present the design of our parallel sub-
graph matching (PSM) framework.

A. Parallel Task

In order to parallelize subgrpah matching, the first step is
to identify the parallelism in the sequential algorithm. Based
on the state space tree model, the states can be expanded
independently. Therefore, a natural way is to regard states as
the basic task units, which is also the strategy used in existing
parallel algorithms such as PGX and pRI. We call this method
the fine-grained parallelism. Given a state S, suppose that
W (S) represents the workload of expanding S. Then, W (S)
can be estimated as bS , which is small. Since H contains an
exponential number of states, the fine-grained parallel method
results in a large number of lightweight tasks. Consequently,
this approach can incur a high communication overhead.

In order to reduce the communication overhead, we need to
increase the workload of parallel tasks to reduce the number of
generated tasks [1]. Reconsidering H , we cannot only expand
the immediate successors of given states S simultaneously, but
also the subtrees rooted at different states S, denoted as H(S).
Furthermore, H(S) can be divided into more fine-grained ones
by taking part of the candidate set of S or separating a subtree
rooted at a successor of S. In the following, we define the
search region.

Definition 5: Search Region: Given a matching order π, a
state space tree H , a state S and the candidate set C(S, u),
a search region H(S, [i : j]) is the subtree rooted at S
constrained with the candidate set ranged [i : j] in H .

Based on Equation 1, the workload of exploring H(S, [i :
j]), denoted as W (H(S, [i : j])), is much more than W (S).
Moreover, search regions can be explored independently as
well as divided into more fine-grained ones. Inspired by this
observation, PSM takes a search region as a parallel task
instead of a state in the fine-grained parallel approach. We
say PSM is coarse-grained parallel, where each worker
expands assigned search regions in a depth-first search order
independently.

Example 2: Figure 3 shows a state space subtree H rooted
at S in which circles and triangles represent states and subtrees
respectively. Suppose that the next vertex in the matching order
of S is u and that of S′ is u′. By only taking C(S, u)[1 :
2], we can get the subtree H ′ in the area surrounded by the
dashed line. Let the part outside the area be H ′′. We have



S
1

2
3

1
2 3

4

H
'H

'S
1 'H

Fig. 3: Search region.

H = H ′ ∪ H ′′ and H ′ ∩ H ′′ = ∅. H ′ can be divided into
more fine-grained ones by taking the subtree H ′1 rooted at S′

with C(S′, u′)[3 : 4]. Let the remaining part of subtree after
split be H ′2. If we have S and S′, then H ′′, H ′1 and H ′2 can
be explored concurrently.

B. Load Balancing

As H is constructed on the fly and irregular, it is hard to
assign equal amounts of work to workers at the beginning.
Therefore, we require a dynamic load balancing approach to
resolve the load imbalance problem. Specifically, we need
to determine when and how to create new tasks. In this
subsection, we mainly focus on how to create new tasks.
The problem that decides when to create tasks is discussed
in Section IV-C.

Suppose that a busy worker is required to give part of its
task to an idle one. Then, the goal of splitting a task is to
divide the task into two subtasks with nearly equal workloads.
When performing a task split, we only know the range of
unvisited vertices in candidate sets of expanded states at each
depth, called the action range.

200:200

1:80

60:160

1:100

One Depth Split

All Depth Split

. . .

. . .

. . . . . .

. . .

State Space Subtree Root

1S

2S

3S

4S

1 200

1 80

1 16060

1 100

Action 
Range

200:200

1:40

60:160

1:100

200:200

1:40

60:110

1:50

0

1

2

3

Fig. 4: Task split example.

Example 3: Figure 4 shows a task split example. The subtree
rooted at S1 is the search region of the busy worker. The
expanded states at each depth are marked in gray, while the
white circles represent the search space that is not explored.
Suppose that when expanding S4, the busy worker is required
to donate part of its remaining work. The right part of Figure
4 shows the action range.

Since the size of the unexplored search space is unknown,
we need to estimate it based on the action range at each depth.
A heuristic rule is that the subtrees rooted at states of the same
depth contains a similar number of states. According to this
rule, we present two task split strategies.

The first strategy is to divide the action range at each
depth into two equal halves. We name it all-depth split. As
shown in Figure 4, after an all-depth split, we keep half of

the elements at each depth and get a new task containing
three search regions H(S2, [41 : 80]), H(S3, [111 : 160]) and
H(S4, [51 : 100]). The second strategy is to only split the
action range of the expanded state close to the subtree root,
named as one-depth split. For example, in Figure 4, we only
partition the action range of S2 equally and get the search
region H(S2, [41 : 80]).

To perform the all-depth split, we need to loop over the
entire action range array to find all candidate sets that can be
partitioned. Moreover, the task generated by the all-depth split
consumes more memory than that of the one-depth split. In
contrast, as the all-depth split partitions the action range of
the expanded states at each depth, the workload of generated
tasks tends to be more uniform than that of the one-depth split.
However, because H grows exponentially with the depth, the
workload of a search region rooted at a shallow depth is much
more than that of one rooted at a deep depth. In other words,
the search region rooted at the shallowest depth dominates the
workload in a all-depth split. Therefore, compared with its
cost, the gain of the all-depth split is thin, so PSM adopts the
one-depth split in its implementation.

Another problem of the task split is to avoid generating
the lightweight tasks, whose benefit offsets its overhead. More
specifically, we need to determine when to stop splitting a task
and keep the remaining task executing in a worker. A classic
idea is to set the maximum depth, denoted as α, at which the
action range is allowed to split [19], which is called the cutoff
depth. This idea works as the size of the subtree rooted at a
deep state is so small that the time saved by exploring it with
many workers can not offset the cost of task split. However,
as H is flat, the number of states of a subtree rooted at a great
depth can be still very large.

In order to address this problem, we introduce another
metric called the cutoff width, denoted as β. When the depth
of the selected state S is greater than α, if the action range
is greater than β, we still split its action range to generate a
new task.

C. Communication Model

PSM adopts a decentralized communication model that has
no master responsible for assigning tasks. As PSM is designed
for a single machine which has a limited number of cores with
a shared memory environment, PSM adopts a sender-initiated
communication method with a global concurrent queue to
deliver tasks among workers. The benefit of this approach is
that idle workers are able to almost immediately acquire work
by the donation of busy workers [2]. Specifically, the busy
workers will frequently check the status of the queue and the
number of idle workers. If a busy worker finds that the queue
is empty and there are idle workers, then it will donate part
of its task, push the generated task into the queue, and wake
up the idle workers to fetch the task.

PSM utilizes a search region H(S, [i : j]) as a parallel task.
The recovery of the search region root has an important effect
on the communication cost. Hence, the design of the data
structure storing the search region information affects both the



communication cost and the memory cost. The action range
[i : j] is easy to be represented as an index pair. The difficulty
is in how to record the search region root S.

Because S only records the mapping relationship from
query vertices to data vertices, a simple idea is to clone S dur-
ing delivery, which we call a root clone. An idle worker starts
the search from S directly without any recomputation. How-
ever, a variety of backtracking subgraph matching algorithms
maintain auxiliary data structures to improve performance. The
auxiliary data structure is updated dynamically as the state
is updated. For example, the VF2 algorithm [6] maintains
vectors to record neighbors of a matched subgraph. Under this
circumstance, the root clone strategy does not work due to the
lack of the auxiliary data structure information. Even if we
could clone the state and the auxiliary data structure together,
both communication and memory costs are expensive.

Recall that the state space tree H is flat. Namely, the search
path is very short and the time required to go through the path
is polynomial to |V (q)|. Furthermore, we generate S from Sr
by mapping query vertices to data vertices along π at each
step, while the auxiliary data structure is also updated based
on the mapping. Thus, if we replay the mappings in order,
we can recover both S and its auxiliary data structure without
copying them. We name this strategy action replay.

By action replay, a task can be stored as mappings and an
index pair, which consumes O(|V (q)|) memory. Moreover, as
PSM generates tasks as necessary (i.e., the queue is empty
and there are idle workers), PSM can generate at most n tasks
simultaneously where n is the number of workers. Therefore,
the size of the queue can be fixed to n. Thus, the concurrent
queue consumes O(n× |V (q)|) memory.

D. Initial Distribution and Termination Detection

In PSM, dynamic load balancing is key to the high parallel
efficiency. Therefore, at the beginning of the execution, we
simply assign vertices in C(Sr, π[1]) evenly to workers as their
initial tasks. As the number of cores (i.e., workers) on a single
machine is limited, PSM implements a simple termination
detection method: when a busy worker becomes idle, it will
check the number of idle workers and the status of the queue.
If there are n idle workers and the queue is empty, it will first
wake up other idle workers to exit and then terminate itself.

V. EXPERIMENTS

In this section, we conduct detailed experiments on a variety
of real datasets to evaluate the performance of PSM.

A. Experimental Setup

Algorithms Under Study. In order to demonstrate the gen-
erality of PSM, we implement three state-of-the-art subgraph
matching algorithms with different properties in PSM: QSI
(QuickSI [22]), GQL (GraphQL [9]) and CFL [4], whose
parallel versions are denoted as pQSI, pGQL and pCFL
respectively. Given q and G, the size of the state space tree
is determined by the matching order and the candidate sets
(i.e., the integrated subgraph matching algorithms). Existing

parallel algorithms PGX [18] and pRI [11] implement spe-
cific subgraph matching algorithms. In contrast, the goal of
PSM is to parallelize a common class of subgraph matching
algorithms with a generic framework. Hence, we evaluate the
efficiency of PSM through comparing the performance of the
parallel algorithms in PSM with their corresponding sequential
algorithms. Additionally, we compare PSM with both PGX
and pRI when applicable.

Experimental Environment. All of our algorithms are
implemented in C++ and the parallelization is based on the
Pthreads library. The source code is compiled by g++ 4.9.3
with -O3 flag. We conduct experiments on a 64-bit Linux
machine equipped with 64GB RAM and two Intel Xeon E5-
2650 v3 CPUs each of which has ten 2.30GHz physical cores.
Therefore, we set the number of workers as 20 by default in
experiments (i.e., one thread per physical core).

Parameters Configuration. PSM requires two parameters
to control the minimum workload of a task: the cutoff depth
α and the cutoff width β. Through experiments, we set α
as |V (q)| − 3 and β as 8 by default from the configurations
α ∈ {1, 2, ..., |V (q)| − 1} and β ∈ {1, 2, 4, 8, 16, 32} for the
best performance.

TABLE II: Properties of real datasets.
Dataset |V| |E| |Σ| Avg. Degree
Yeast 3,112 12,519 71 8.04
WordNet 76,853 120,399 5 3.13
Youtube 1,134,890 2,987,624 25 5.27
US Patents 3,774,768 16,518,948 20 8.75

Graph Datasets. We select four real datasets, which have
been widely used in previous work [4], [20], [24]. Yeast and
WordNet originally contain labels. The other two datasets have
no labels, to each of which we randomly assign distinct labels.
Table II lists the detailed information. As shown in Table II,
|V | scales from thousands to millions, |Σ| ranges from 5 to 71
and the average degree varies from 3.13 to 8.75. Thus, the real
datasets have various properties to evaluate the performance
of PSM.

Query Sets. Following the previous research [4], [20],
[24], we generate query graphs by selecting subgraphs from a
data graph randomly to guarantee that at least one subgraph
isomorphism exists. We generate five query sets for each data
graph, and each query set contains ten query graphs with the
same number of vertices. Each query graph is connected. The
query sets of each data graph are shown in Table III, where qi
represents a set of i-vertex query graphs. The query graphs for
WordNet are smaller, because 63,098 of the 76,853 vertices
(i.e., ≥ 80%) in WordNet have the same label. As a result,
subgraph matching on WordNet is harder than the other three
graphs.

TABLE III: Query sets information.
Dataset Query Set
Yeast, Youtube, US Patents q12, q13, q14, q15, q16
WordNet q8, q9, q10, q11, q12



TABLE IV: Speedup on the real datasets.
Short Queries Long Queries Overall

gSpeedup iSpeedup #queries gSpeedup iSpeedup #queries gSpeedup iSpeedup #queries
pGQL 17.32 15.32 124 19.25 19.18 76 19.10 16.79 200
pCFL 17.68 15.70 114 18.50 18.49 77 18.46 16.82 191
pQSI 17.65 16.60 117 17.94 17.93 79 17.92 17.14 196

8 9 10 11 12
|V(q)|

10-1

100

101

102

103

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

GQL

CFL

QSI

pGQL

pCFL

pQSI

(a) WordNet

12 13 14 15 16
|V(q)|

10-1

100

101

102

103

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

GQL

CFL

QSI

pGQL

pCFL

pQSI

(b) Yeast

12 13 14 15 16
|V(q)|

100

101

102

103

104

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

GQL

CFL

QSI

pGQL

pCFL

pQSI

(c) Youtube

12 13 14 15 16
|V(q)|

10-1

100

101

102

103

104

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

GQL

CFL

QSI

pGQL

pCFL

pQSI

(d) US Patents
Fig. 5: Execution time on the real datasets with the number of query vertices varied.

Metrics. We examine two metrics in our experiments: the
execution time and the speedup. The execution time is the
average time of processing a query graph in a query set,
which excludes the time of loading the data from the disk.
A challenging problem is that given query graphs with the
same number of vertices, the execution time of answering them
has a large variance. As a result, the long queries dominate
the average execution time. To solve this problem, we use
two kinds of speedup, the global speedup (gSpeedup) and the
individual speedup (iSpeedup), to evaluate the gain of PSM.
Equation 2 and 3 define gSpeedup and iSpeedup respectively,
in which Q is a query set, TS(q) is the execution time
answering q in sequential and TP (q) is the execution time
in parallel. The gSpeedup metric is designed from the system
perspective, because the system focuses on the total speedup of
answering a collection of queries with PSM, while iSpeedup
is for an individual user, since the user is interested in the
expected speedup of answering the individual query.

gSpeedup =

∑
q∈Q TS(q)∑
q∈Q TP (q)

. (2)

iSpeedup =
1

|Q|
∑
q∈Q

TS(q)

TP (q)
. (3)

Additionally, in order to complete the experiments in rea-
sonable time, the time limit for processing a query graph is 90
minutes (i.e., 5, 400 seconds). If a sequential algorithm cannot
finish within the time limit, then we terminate the query of
omit the result of this query.

B. Speedups of Individual Algorithms on PSM

In this subsection, we evaluate the execution time of PSM
and the speedup obtained with PSM compared with the
sequential counterparts.

Figure 5 illustrates the execution time on the real datasets
with the number of query vertices varied. The dashed lines
denote the execution time of original sequential algorithms,
while the solid lines represent the execution time of these
algorithms parallelized with PSM. Overall, there is no single
winner on all test cases among the sequential algorithms.
As our goal is to evaluate PSM rather than comparing the

performance of the sequential algorithms, we next focus on
the performance improvement with PSM. As shown in the
figure, the parallel algorithms perform much better than their
original sequential ones on all test cases. For example, GQL
on average spends 1,327 seconds to answer a query with 16
vertices on youtube, while pGQL only takes 71 seconds.

Next, we examine the speedup achieved with PSM, which
is presented in Table IV. Generally, the benefit of processing a
long-running task in parallel is greater than that of a short task,
because the overhead incurred by parallelization compared
with the execution time of the long task is low. Therefore,
we categorize the queries into two classes by the processing
time. Specifically, we regard a query as a short query if the
sequential algorithm takes less than 10 seconds to answer it.
Otherwise, it is a long query. Note that in our experiments, we
examine each algorithm with 200 queries (i.e., 4 datasets × 50
query graphs) in total. The gSpeedup of short queries is greater
than iSpeedup, because among the short queries, there are
many instances taking very small execution time that dominate
the value of iSpeedup. Furthermore, all the three algorithms
achieve speedups (both gSpeedups and iSpeedups) of more
than 15X on short queries. In comparison, the gSpeedup
and iSpeedup values of long queries are similar, since the
execution time of each long query is much greater than the
overhead incurred by parallelization. Furthermore, the parallel
algorithms achieve higher speedups on long queries than on
short ones. More specifically, on long queries the gSpeedup
and iSpeedup values are 17.92 and 16.79 respectively. Note
that, regardless of parallelization, CFL and QSI fail to finish
9 and 4 queries respectively due to the ineffective matching
orders.

Through the detailed experimental results, we show that all
the three integrated algorithms achieve significant performance
improvement on all the four datasets.

C. Evaluate PSM efficiency

In this subsection, we first compare PSM with existing
parallel algorithms PGX and pRI, and then evaluate PSM
efficiency, including the dynamic load balancing, the scalabil-
ity, the overhead incurred by communication and the memory
cost. Specifically, instead of examining the average value of a



query set, we pick a short query on Yeast and a long query
on Youtube as case studies for detailed evaluation.

1) Compare PSM with PGX and pRI: Given q and G, the
size of the search space is determined by the matching order
and the candidate sets. PSM, PGX and pRI explore the search
space in parallel, but not reduce its size. Therefore, it is unfair
to compare the parallel algorithms directly, as they parallelize
different sequential algorithms, which can generate various
search spaces even with the same q and G. In order to resolve
this problem, we first extract the parallel strategies such as
the parallel task representation, the load balancing method and
the communication model from PGX and pRI, and then adopt
the strategies to parallelize GQL, QSI and CFL respectively.
This way, we can make a fair comparison among PSM, PGX
and pRI. In particular, because PGX explores the state space
tree in a breadth-first search order, it has to maintain all the
intermediate results at each iteration. Consequently, algorithms
with PGX parallelization fail to complete the query because
they run out of memory. For example, given the long query
on Youtube, there are at most 3.2× 1010 partial results at an
iteration, which cannot fit entirely in the memory. In contrast,
both PSM and pRI explore the search tree in a depth-first
search order, and consume a small amount of memory to store
the partial results. In the following, we omit the results of PGX
and mainly compare PSM with pRI.

GQL CFL QSI
0.0

0.1

0.2

0.3

0.4

0.5

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

pRI PSM

(a) Yeast
GQL CFL QSI

0

50

100

150

200

250

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

pRI PSM

(b) Youtube
Fig. 6: Compare PSM with pRI.

Figure 6 presents the execution time of the algorithms
parallelized with the strategies of PSM and pRI. All the
algorithms run with 20 workers. For the short query on Yeast,
the performance of the pRI-style parallel algorithms is close to
that of the PSM-style ones. In contrast, for the long query on
Youtube, the PSM-style parallel algorithms run around 1.85
times faster than the pRI-style. This difference is because
the search space of the short query is small, whereas that of
the long query is large. Because of the exponential number
of partial results in the large search space, the fine-grained
parallel strategy of pRI incurs expensive overhead. Overall,
the PSM-style algorithms achieve speedups of more than 16X
on the short query and 17.4X on the long query, whereas the
speedups of the pRI-style algorithms are around 15X and 9.5X.
Specifically, because GQL, CFL and QSI generate similar
matching orders for the long query on Youtube, the execution
time of the competing algorithms is similar on this query.

2) Compare the dynamic load balancing with the static load
balancing: In order to demonstrate the impact of the dynamic
load balancing in PSM, we compare PSM with the dynamic
load balancing method enabled, denoted as PSM-dynamic,

with that only with the initial distribution of tasks, called
the static load balancing and denoted as PSM-static. Figure
7 presents the execution time of the algorithms parallelized
with PSM-dynamic and PSM-static respectively as well as
the sequential counterparts. We can see that the algorithms
parallelized with PSM-static achieve limited speedups com-
pare with the sequential counterparts due to the irregular
search space. In contrast, the algorithms with the dynamic
load balancing strategy achieve significant speedups.

GQL CFL QSI
0

1

2

3

4

5

6

7

8

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Sequential

PSM-static

PSM-dynamic

(a) Yeast
GQL CFL QSI

0

500

1000

1500

2000

2500

3000

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Sequential

PSM-static

PSM-dynamic

(b) Youtube
Fig. 7: Compare the dynamic load balancing with the static
load balancing.

3) Evaluate the scalability of PSM: Figure 8 presents
the execution time of the parallel algorithms with #workers
varied from 1 to 20. As shown in the figure, all the three
algorithms achieve almost linear speedups on the two queries.
Specifically, the speedups with 20 workers are about 16X on
Yeast and 17.4X on Youtube datasets. In Figure 8b, the three
lines coincide with each other, because the three algorithms
have similar matching orders and candidate sets.

1 2 4 8 16 20
#Workers

10-2

10-1

100

101

102

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

pGQL

pCFL

pQSI

(a) Yeast

1 2 4 8 16 20
#Workers

101

102

103

104

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

pGQL

pCFL

pQSI

(b) Youtube
Fig. 8: Execution time with #workers varied.

4) Evaluate the time overhead of PSM: Figure 9 presents
the time overhead of each worker, which is incurred by
parallelization. In particular, the time overhead consists of
the time on creating tasks, delivering tasks, and performing
the action replay. There is no time overhead on the 1-worker
setup, as the sequential algorithms have no parallelization.
We can see that the time overhead generally increases with
the number of workers. Subsequently, we further examine the
number of tasks executed per worker with the total number
of workers varied. As shown in Figure 10, the number of
tasks per worker grows with the number of workers, and
this curve has a similar trend to that of the time overhead.
Moreover, by comparing Figure 10a with 10b, we find that
the number of tasks in the long query is greater than that
in the short query. This is because a greater workload and
more workers require more tasks to keep the load balance
in PSM. Nevertheless, the time overhead incurred by PSM



TABLE V: Memory cost.
Yeast Youtube

Task Queue Candidates Task Queue Candidates
pGQL 2.969 KB 0.0387 MB 2.969 KB 0.2257 MB
pCFL 2.969 KB 0.0443 MB 2.969 KB 0.2538 MB
pQSI 2.969 KB 0.0366 MB 2.969 KB 0.2309 MB

only accounts for a small proportion of the execution time,
especially for the long queries.

Recall that the speedups of the two queries are 16X and
17.4X in the 20-worker setup, which are slightly lower than the
ideal speedup of 20. After an investigation with a performance
profiling tool Intel VTune, we find that this difference is
mainly because (1) The memory accesses of the multi-threaded
graph algorithms are frequently irregular; and (2) Context
switches between multiple threads take time.

2 4 8 16 20
#Workers

10-4

10-3

10-2

10-1

100

O
v
e
rh

e
a
d
 T

im
e
 P

e
r 

T
h
re

a
d
 (

s)

pGQL

pCFL

pQSI

(a) Yeast

2 4 8 16 20
#Workers

10-4

10-3

10-2

10-1

100

O
v
e
rh

e
a
d
 T

im
e
 P

e
r 

T
h
re

a
d
 (

s)

pGQL

pCFL

pQSI

(b) Youtube
Fig. 9: Time overhead per worker with #workers varied.

2 4 8 16 20
#Workers

100

101

102

103

#
T
a
sk

s 
C

o
n
su

m
e
d
 P

e
r 

W
o
rk

e
r

pGQL

pCFL

pQSI

(a) Yeast

2 4 8 16 20
#Workers

100

101

102

103

#
T
a
sk

s 
C

o
n
su

m
e
d
 P

e
r 

W
o
rk

e
r

pGQL

pCFL

pQSI

(b) Youtube
Fig. 10: #Tasks consumed per worker with #workers varied.

5) Evaluate the memory cost of PSM: Except the data
graph, PSM consumes extra memory space for the queue
containing tasks (denoted task queue in short) and the can-
didate sets generated during the enumeration of each worker
(denoted candidates in short). Table V lists the memory cost
of the two queries, which excludes the cost of the data graph.
As a task consumes O(|V (q)|) memory and the queue has a
fixed size to the number of workers, the task queue of the
six cases consumes the same memory space, which is around
3 KB and negligible. Given a query vertex, it has at most
|V (G)| candidate data vertices. Therefore, PSM consumes
O(n×|V (q)|×|V (G)|) memory to hold the candidate sets (n is
#workers). In practice, the memory cost is very small, because
most of data vertices can be ruled out by filtering rules used in
the GenerateCandidateSet function, for example the degree
and label filters. As illustrated in the table, PSM consumes
less than 0.3 MB to store the candidates in the experiments,
which shows that PSM consumes small extra memory space
to parallelize the sequential algorithms.

VI. CONCLUSION

In this paper, we propose a generic parallel subgraph
matching framework called PSM to accelerate backtracking
subgraph matching algorithms. We integrate three represen-
tative subgraph matching algorithms into PSM to show its
generality. Through extensive experiments on a variety of real
datasets, we demonstrate the efficiency and robustness of PSM.

REFERENCES

[1] F. N. Abu-Khzam, K. Daudjee, A. E. Mouawad, and N. Nishimura.
On scalable parallel recursive backtracking. Journal of Parallel and
Distributed Computing, 2015.

[2] U. A. Acar, A. Chargueraud, and M. Rainey. Scheduling parallel
programs by work stealing with private deques. SIGPLAN, 2013.

[3] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating subgraph
instances using map-reduce. ICDE, 2013.

[4] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph
matching by postponing cartesian products. SIGMOD, 2016.

[5] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. A
subgraph isomorphism algorithm and its application to biochemical data.
BMC bioinformatics, 2013.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. TPAMI, 2004.

[7] B. Gallagher. Matching structure and semantics: A survey on graph-
based pattern matching. AAAI FS, 2006.

[8] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and robust
subgraph isomorphism search in large graph databases. SIGMOD, 2013.

[9] H. He and A. K. Singh. Graphs-at-a-time: query language and access
methods for graph databases. SIGMOD, 2008.

[10] F. Katsarou, N. Ntarmos, and P. Triantafillou. Subgraph querying with
parallel use of query rewritings and alternative algorithms. EDBT, 2017.

[11] R. Kimmig, H. Meyerhenke, and D. Strash. Shared memory parallel
subgraph enumeration. IPDPS Workshop, 2017.

[12] L. Lai, L. Qin, X. Lin, and L. Chang. Scalable subgraph enumeration
in mapreduce. PVLDB, 2015.

[13] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang. Scalable
distributed subgraph enumeration. In PVLDB, 2017.

[14] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth
comparison of subgraph isomorphism algorithms in graph databases.
PVLDB, 2012.

[15] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Capturing
topology in graph pattern matching. TODS, 2014.

[16] R. G. Michael and S. J. David. Computers and intractability: a guide to
the theory of np-completeness. WH Free. Co., 1979.

[17] M. Qiao, H. Zhang, and H. Cheng. Subgraph matching: on compression
and computation. PVLDB, 2017.

[18] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and J. Banerjee. Pgx.
iso: parallel and efficient in-memory engine for subgraph isomorphism.
GRADES, 2014.

[19] V. N. Rao and V. Kumar. Parallel depth first search. part i. implemen-
tation. IJPP, 1987.

[20] X. Ren and J. Wang. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. PVLDB, 2015.

[21] X. Ren and J. Wang. Multi-query optimization for subgraph isomor-
phism search. PVLDB, 2016.

[22] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism. PVLDB, 2008.

[23] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu. Parallel subgraph
listing in a large-scale graph. SIGMOD, 2014.

[24] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph
matching on billion node graphs. PVLDB, 2012.

[25] H.-N. Tran, J.-j. Kim, and B. He. Fast subgraph matching on large
graphs using graphics processors. DASFAA, 2015.

[26] J. R. Ullmann. An algorithm for subgraph isomorphism. JACM, 1976.
[27] S. Zhang, S. Li, and J. Yang. Summa: subgraph matching in massive

graphs. CIKM, 2010.
[28] P. Zhao and J. Han. On graph query optimization in large networks.

PVLDB, 2010.
[29] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gstore: answering

sparql queries via subgraph matching. PVLDB, 2011.


