
Parallelizing Recursive Backtracking Based
Subgraph Matching on a Single Machine

Shixuan SUN and Qiong LUO

1

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Background

2

Applications

RDF queries

Protein interaction studies

Computer aided design

Social network analysis

3

Applications

RDF queries

Protein interaction studies

Computer aided design

Social network analysis

4

Subgraph
Matching

Subgraph Matching

l Given a query graph 𝑞 and a data graph 𝐺, find all subgraphs in
𝐺 that are identical to 𝑞.
• Note: 𝑞 is connected, and much smaller than 𝐺.
• Complexity: NP-hard.

5

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

(c). The results of subgraph matching
𝑓1 = 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , 𝑢3, 𝑣9 , 𝑢4, 𝑣6

Subgraph Matching

l Given a query graph 𝑞 and a data graph 𝐺, find all subgraphs in
𝐺 that are identical to 𝑞.
• Note: 𝑞 is connected, and much smaller than 𝐺.
• Complexity: NP-hard.

6

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

(c). The results of subgraph matching

𝑓1 = 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , 𝑢3, 𝑣9 , 𝑢4, 𝑣6
𝑓2 = { 𝑢1, 𝑣6 , 𝑢2, 𝑣5 , 𝑢3, 𝑣9 , (𝑢4, 𝑣3)}

Subgraph Isomorphism

l Given a query graph 𝑞 = (𝑉, 𝐸, Σ, 𝐿) and a data graph 𝐺 = (𝑉′, 𝐸′, Σ′, 𝐿′),
a subgraph isomorphism is an injective function 𝑓 from 𝑉 → 𝑉′ that
satisfies:
1) ∀ 𝑢 ∈ 𝑉, 𝐿 𝑢 = 𝐿! 𝑓 𝑢 ;
2) ∀ 𝑒 𝑢, 𝑣 ∈ 𝐸, ∃ 𝑒 𝑓 𝑢 , 𝑓 𝑣 ∈ 𝐸!.

7

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

𝑓 = 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , 𝑢3, 𝑣9 , 𝑢4, 𝑣6

(a). Query graph 𝑞 (b). Data graph 𝐺

(c). A subgraph isomorphism from 𝑞 to 𝐺

Motivation

8

l Due to the hardness of subgraph matching, existing algorithms often
take a long time to process big data graphs.
• Conducting subgraph matching on the Youtube dataset containing

over one million vertices takes more than one thousand seconds.
l Existing parallel algorithms either achieve limited speedups or easily

run out of memory.
• pRI’s speedup over the sequential RI is limited to less than 10

times on a machine of 16 CPU cores [11].
• PGX has to maintain 3.2×10"# partial results at one iteration,

which consumes all the memory space [10].
l A commodity machine nowadays has considerable parallel

computation capabilities.
• There are up to tens of cores in one processor.

Motivation

9

l Due to the hardness of subgraph matching, these algorithms often
take a long time to process big data graphs.
• Conducting subgraph matching on the Youtube dataset containing

over one million vertices takes more than one thousand seconds.
l Existing parallel algorithms either achieve limited speedups or easily

run out of memory.
• pRI’s speedup over the sequential RI is limited to less than 10

times on a machine of 16 CPU cores [11].
• PGX has to maintain 3.2×10"# partial results at one iteration,

which consumes all the memory space [10].
l A commodity machine nowadays has considerable parallel

computation capabilities.
• There are up to tens of cores in one processor.

We propose to parallelize subgraph matching on
a single machine.

Existing Algorithms

Algorithms Methodology Execution Year Published
Ullmann[1] Backtracking Serial 1976

VF2[2] Backtracking Serial 2004
QSI[3] Backtracking Serial 2008
GQL[4] Backtracking Serial 2008

GADDI[5] Backtracking Serial 2009
Spath[6] Backtracking Serial 2010

TurboISO[7] Backtracking Serial 2013
CFL[8] Backtracking Serial 2016

Stwig[9] Join Parallel, Distributed 2012
PGX[10] Backtracking Parallel, CPU 2014
pRI[11] Backtracking Parallel, CPU 2017

GpSM[12] Join Parallel, GPU 2015
10

Recursive Backtracking based Subgraph Matching

11

l General Idea:
Input: a query graph 𝑞 and a data graph 𝐺
Output: all subgraph isomorphisms from 𝑞 to 𝐺
1. Generate a matching order 𝜋, which is a permutation of query

vertices;
• QSI [3] adopts the infrequent-label first ordering strategy;
• GQL [4] adopts the left-deep join ordering strategy;
• CFL [8] adopts the tree-based ordering strategy;

2. Obtain a candidate set 𝑢. 𝐶 for every vertex 𝑢 ∈ 𝑉(𝑞), which
contains the data vertices that can be mapped to 𝑢;
• The neighborhood signature filter and the pseudo tree

isomorphism filter;
3. Enumerate all solutions by extending partial results recursively

along the matching order 𝜋.

12

We propose an efficient parallel subgraph matching
framework (PSM) to parallelize backtracking based subgraph

matching algorithms on a single machine.

Challenges

13

l Abstract backtracking based subgraph matching algorithms into an
uniform model.

l Find a suitable granularity of parallelism in subgraph matching.

l Achieve load balance and reduce overhead introduced by
parallelization.

State Space Tree

14

State Space Tree Exploration

15

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

u1

u2

u3

u4

𝝅 𝑓!
• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑓! = {}

State Space Tree Exploration

16

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

u1

u2

u3

u4

𝝅

v1

𝑓!

𝑓! = {}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

State Space Tree Exploration

17

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓" = {(𝑢1, 𝑣1)}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

u1

u2

u3

u4

𝝅

v1

𝑓!

State Space Tree Exploration

18

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓" = {(𝑢1, 𝑣1)}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

u1

u2

u3

u4

𝝅

v1

v2

𝑓!

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

State Space Tree Exploration

19

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓# = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

u1

u2

u3

u4

𝝅

v1

v2

𝑓!

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

State Space Tree Exploration

20

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓# = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

v2

𝑓!

State Space Tree Exploration

21

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓# = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

×

v2

𝑓!

State Space Tree Exploration

22

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓# = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

×

v2

𝑓!

v9

State Space Tree Exploration

23

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓# = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

×

v2

×

v9

𝑓!

State Space Tree Exploration

24

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓# = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

×

v2

×

v9

𝑓!

State Space Tree Exploration

25

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓" = { 𝑢1, 𝑣1 }

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v5

v7

×

v2

×

v9

𝑓!

State Space Tree Exploration

26

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×
v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×
v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√
Compact 𝑣7 and
𝑣9 due to space

limit.

𝝅

Properties of the State Space Tree

27

l There is an exponential
number of nodes in 𝐻.

l The tree 𝐻 has an irregular
shape.

l 𝐻 is flat, i.e., 𝜋 ≪ max
#$%$|'|

|𝐻%|.

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×
v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×
v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and
𝑣9 due to space

limit.

𝝅

𝐻$ = =
1 𝑖 = 0

@
%&!

$'"
𝑏% 0 < 𝑖 ≤ |𝜋|

𝐻$ is the number of nodes at
depth 𝑖 in the state space tree 𝐻.
𝑏% is the average branching
factor of nodes at depth 𝑖 in 𝐻.

Research Focus of Sequential Algorithms

28

l Optimize the matching order.

l Minimize the search breadth (branches) of each state.

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×
v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×
v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and
𝑣9 due to space

limit.

𝝅

Research Focus of Sequential Algorithms

29

l Optimize the matching order.

l Minimize the search breadth (branches) of each state.

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×
v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×
v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and
𝑣9 due to space

limit.

𝝅

The focus of our paper is to explore the
tree in parallel.

Design of Parallel
Subgraph Matching (PSM)

30

Parallel Task – Fine-Grained Parallelism

31

l Observation: Each node (state) can be expanded independently.
l Solution: Regard each node as the basic task unit.
l Cons:

• The fine-grained parallel method results in a large number of light
weight tasks.

• The approach can incur a high communication overhead.

• Node: a psi
• Edge: a mapping
• Cross: infeasible mapping
• Tick: a solution

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×
v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×
v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and
𝑣9 due to space

limit.

𝝅

𝑆

Parallel Task – Coarse-Grained Parallelism

32

l Observation: The subtree rooted at a node can be explored
independently.

l Solution: Regard the subtree rooted at 𝑆, denoted as 𝐻(𝑆), as a
parallel task. 𝐻(𝑆) can be further divided into more fine grained ones
by taking part of the candidates, denoted as 𝐻(𝑆, [𝑖: 𝑗]).

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×
v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×
v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

𝝅

𝑆

𝐻(𝑆)

𝐻(𝑆!, [2: 4])
𝑆!

Parallel Task – Coarse-Grained Parallelism

33

l PSM takes coarse-grained tasks instead of fine-grained ones. PSM
expands each subtree independently in a depth-first search method.
• Example: 𝐻, 𝐻′ and 𝐻"′ can be explored concurrently by different

workers.

Load Balancing

34

l It is hard to assign equal amounts of workload to workers at the
beginning (static load balancing), because 𝐻 is constructed on the
fly and irregular.

l PSM designs a dynamic load balancing approach to resolve the
load imbalance problem.

Load Balancing – Communication Model

35

l PSM adopts a decentralized communication model, i.e., PSM has no
master responsible for assigning tasks.

l PSM adopts a sender-initiated method with a global concurrent queue
to deliver tasks among workers.
• Busy workers will donate part of its task when they find that the

queue is empty and there are idle workers.

Load Balancing – Communication Model

36

l PSM adopts a decentralized communication model, i.e., PSM has no
master responsible for assigning tasks.

l PSM adopts a sender-initiated method with a global concurrent queue
to deliver tasks among workers.
• Busy workers will donate part of its task when they find that the

queue is empty and there are idle workers.

Busy Busy Busy

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

Load Balancing – Communication Model

37

l PSM adopts a decentralized communication model, i.e., PSM has no
master responsible for assigning tasks.

l PSM adopts a sender-initiated method with a global concurrent queue
to deliver tasks among workers.
• Busy workers will donate part of its task when they find that the

queue is empty and there are idle workers.

Busy Busy Idle

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

Load Balancing – Communication Model

38

l PSM adopts a decentralized communication model, i.e., PSM has no
master responsible for assigning tasks.

l PSM adopts a sender-initiated method with a global concurrent queue
to deliver tasks among workers.
• Busy workers will donate part of its task when they find that the

queue is empty and there are idle workers.

Busy Busy Idle

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

Push Wake Up

Load Balancing – Communication Model

39

l PSM adopts a decentralized communication model, i.e., PSM has no
master responsible for assigning tasks.

l PSM adopts a sender-initiated method with a global concurrent queue
to deliver tasks among workers.
• Busy workers will donate part of its task when they find that the

queue is empty and there are idle workers.

Busy Busy Busy

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

Pop

Load Balancing – Task Split

40

l Goal: Divide the task into two subtasks with nearly equal workload.

Load Balancing – Task Split

41

l Goal: Divide the task into two subtasks with nearly equal workload.
l Challenge: As the state space tree is constructed on the fly and

irregular, it is hard to estimate the workload of a task.

Load Balancing – Task Split

42

l Goal: Divide the task into two subtasks with nearly equal workload.
l Challenge: As the state space tree is constructed on the fly and

irregular, it is hard to estimate the workload of a task.
l Heuristic: As the state space tree grows exponentially, the workload

of the subtree rooted at a shallow depth is much more than that of one
rooted at a deep depth.

Load Balancing – Task Split

43

l Goal: Divide the task into two subtasks with nearly equal workload.
l Challenge: As the state space tree is constructed on the fly and

irregular, it is hard to estimate the workload of a task.
l Heuristic: As the state space tree grows exponentially, the workload

of the subtree rooted at a shallow depth is much more than that of one
rooted at a deep depth.

l Solution：Split the branches of a state close to the subtree root
evenly to generate a new task.

We obtain a new
task 𝐻(𝑆#, [41,80]).

Evaluation

44

Experimental Setup

45

l Algorithms Under Study:
• pQSI: QuickSI [3] (VLDB’08) parallelized with PSM;
• pGQL: GraphQL [4] (SIGMOD’08) parallelized with PSM;
• pCFL: CFL [8] (SIGMOD’16) parallelized with PSM;
• PGX [10]: A parallel BFS approach proposed in GRADES’14;
• pRI [11]: A parallel approach proposed in IPDPS’17;

l Experimental Environment:
• All algorithms are implemented in C++. The source code is

compiled with g++ 4.9.3 with –O3 flag enabled.
• We conduct experiments on a 64-bit Linux machine with 64GB

RAM and two Intel Xeon E5-2650 v3 CPUs each of which has ten
2.30GHz physical cores (20 workers by default).

Experimental Setup

46

l Real World Datasets:

l Query Datasets:

𝑉 is the number of vertices.
𝐸 is the number of edges.
|Σ| is the number of distinct labels.

Comparison with Sequential Counterparts

47

l The parallel algorithms with PSM achieve a speedup of 15.5X-19.5X
over the original sequential algorithms.

(a). WordNet (b). Yeast

(c). Youtube (d). US Patents

Comparison with Existing Parallel Algorithms

48

l PGX explores the search tree with parallel BFS method. It runs out of
the memory due to the exponential number of states. We omit its
experiment results.

l pRI takes each state as the parallel task and explores the search tree
in DFS.

l For the fair of comparison, we use the same matching order and
filtering methods in PGX and pRI with that in PSM.

(a). Yeast (b). Youtube

Evaluate the Dynamic Load Balancing of PSM

49

l Static Load Balancing: Assign the states at depth 1 of the state
space tree evenly to workers.

l Dynamic Load Balancing: The load balancing strategy proposed in
PSM.

(a). Yeast (b). Youtube

Evaluate the Scalability of PSM

50

(a). Yeast (b). Youtube

l PSM achieve almost linear speedups on the two datasets.
l The speedups with 20 workers are about 16X on Yeast and 17.4X on

Youtube.

Memory Consumption

51

l The memory consumption of the auxiliary data structures and the
candidate sets is very small.
• Note: We find the results without materializing the results into file

systems.

Conclusion

52

Conclusion

53

l We propose a parallel subgraph matching framework called PSM to
accelerate backtracking subgraph matching algorithms.

l Extensive experiments on a variety of real world datasets demonstrate
the efficiency and robustness of PSM.

References

54

[1]. Ullmann, Julian R. "An algorithm for subgraph isomorphism." Journal of the ACM (JACM) 23.1 (1976): 31-42.
[2]. Cordella, Luigi P., et al. "A (sub) graph isomorphism algorithm for matching large graphs." IEEE transactions
on pattern analysis and machine intelligence 26.10 (2004): 1367-1372.
[3]. Shang, Haichuan, et al. "Taming verification hardness: an efficient algorithm for testing subgraph
isomorphism." Proceedings of the VLDB Endowment 1.1 (2008): 364-375.
[4]. He, Huahai, and Ambuj K. Singh. "Graphs-at-a-time: query language and access methods for graph
databases." Proceedings of the 2008 ACM SIGMOD international conference on Management of data. ACM,
2008.
[5]. Zhang, Shijie, Shirong Li, and Jiong Yang. "GADDI: distance index based subgraph matching in biological
networks." Proceedings of the 12th International Conference on Extending Database Technology: Advances in
Database Technology. ACM, 2009.
[6]. Zhao, Peixiang, and Jiawei Han. "On graph query optimization in large networks." Proceedings of the VLDB
Endowment 3.1-2 (2010): 340-351.
[7]. Han, Wook-Shin, Jinsoo Lee, and Jeong-Hoon Lee. "Turbo iso: towards ultrafast and robust subgraph
isomorphism search in large graph databases." Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. ACM, 2013.
[8]. Bi, Fei, et al. "Efficient subgraph matching by postponing cartesian products." Proceedings of the 2016
International Conference on Management of Data. ACM, 2016.
[9]. Sun, Zhao, et al. "Efficient subgraph matching on billion node graphs." Proceedings of the VLDB Endowment
5.9 (2012): 788-799.
[10]. Raman, Raghavan, et al. "Pgx. iso: parallel and efficient in-memory engine for subgraph isomorphism."
Proceedings of Workshop on GRAph Data management Experiences and Systems. ACM, 2014.

References

55

[11]. R. Kimming, H. Meyerhenke, and D. Strash. “Shared memory parallel subgraph enumeration.“ IPDPS
Workshop. 2017.
[12]. Tran, Ha-Nguyen, Jung-jae Kim, and Bingsheng He. "Fast subgraph matching on large graphs using graphics
processors." International Conference on Database Systems for Advanced Applications. Springer International
Publishing, 2015.
[13]. Lee, Jinsoo, et al. "An in-depth comparison of subgraph isomorphism algorithms in graph databases."
Proceedings of the VLDB Endowment. Vol. 6. No. 2. VLDB Endowment, 2012.

Thanks!

56

