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Subgraph Matching

l Given a query graph 𝑞 and a data graph 𝐺, find all subgraphs in 
𝐺 that are identical to 𝑞.
• Note: 𝑞 is connected, and much smaller than 𝐺.
• Complexity: NP-hard.
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(c). The results of subgraph matching

𝑓1 = 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , 𝑢3, 𝑣9 , 𝑢4, 𝑣6
𝑓2 = { 𝑢1, 𝑣6 , 𝑢2, 𝑣5 , 𝑢3, 𝑣9 , (𝑢4, 𝑣3)}



Subgraph Isomorphism

l Given a query graph 𝑞 = (𝑉, 𝐸, Σ, 𝐿) and a data graph 𝐺 = (𝑉′, 𝐸′, Σ′, 𝐿′), 
a subgraph isomorphism is an injective function 𝑓 from 𝑉 → 𝑉′ that 
satisfies:
1) ∀ 𝑢 ∈ 𝑉, 𝐿 𝑢 = 𝐿! 𝑓 𝑢 ;
2) ∀ 𝑒 𝑢, 𝑣 ∈ 𝐸, ∃ 𝑒 𝑓 𝑢 , 𝑓 𝑣 ∈ 𝐸!.

7

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

𝑓 = 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , 𝑢3, 𝑣9 , 𝑢4, 𝑣6

(a). Query graph 𝑞 (b). Data graph 𝐺

(c). A subgraph isomorphism from 𝑞 to 𝐺



Motivation

8

l Due to the hardness of subgraph matching, existing algorithms often 
take a long time to process big data graphs.
• Conducting subgraph matching on the Youtube dataset containing 

over one million vertices takes more than one thousand seconds.
l Existing parallel algorithms either achieve limited speedups or easily 

run out of memory.
• pRI’s speedup over the sequential RI is limited to less than 10 

times on a machine of 16 CPU cores [11]. 
• PGX has to maintain 3.2×10"# partial results at one iteration, 

which consumes all the memory space [10].
l A commodity machine nowadays has considerable parallel 

computation capabilities.
• There are up to tens of cores in one processor.
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l Due to the hardness of subgraph matching, these algorithms often 
take a long time to process big data graphs.
• Conducting subgraph matching on the Youtube dataset containing 

over one million vertices takes more than one thousand seconds.
l Existing parallel algorithms either achieve limited speedups or easily 

run out of memory.
• pRI’s speedup over the sequential RI is limited to less than 10 

times on a machine of 16 CPU cores [11]. 
• PGX has to maintain 3.2×10"# partial results at one iteration, 

which consumes all the memory space [10].
l A commodity machine nowadays has considerable parallel 

computation capabilities.
• There are up to tens of cores in one processor.

We propose to parallelize subgraph matching on 
a single machine. 



Existing Algorithms

Algorithms Methodology Execution Year Published
Ullmann[1] Backtracking Serial 1976

VF2[2] Backtracking Serial 2004
QSI[3] Backtracking Serial 2008
GQL[4] Backtracking Serial 2008

GADDI[5] Backtracking Serial 2009
Spath[6] Backtracking Serial 2010

TurboISO[7] Backtracking Serial 2013
CFL[8] Backtracking Serial 2016

Stwig[9] Join Parallel, Distributed 2012
PGX[10] Backtracking Parallel, CPU 2014
pRI[11] Backtracking Parallel, CPU 2017

GpSM[12] Join Parallel, GPU 2015
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Recursive Backtracking based Subgraph Matching 
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l General Idea:
Input: a query graph 𝑞 and a data graph 𝐺
Output: all subgraph isomorphisms from 𝑞 to 𝐺
1. Generate a matching order 𝜋, which is a permutation of query 

vertices;
• QSI [3] adopts the infrequent-label first ordering strategy;
• GQL [4] adopts the left-deep join ordering strategy;
• CFL [8] adopts the tree-based ordering strategy;

2. Obtain a candidate set 𝑢. 𝐶 for every vertex 𝑢 ∈ 𝑉(𝑞), which 
contains the data vertices that can be mapped to 𝑢;
• The neighborhood signature filter and the pseudo tree 

isomorphism filter;
3. Enumerate all solutions by extending partial results recursively 

along the matching order 𝜋.
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We propose an efficient parallel subgraph matching 
framework (PSM) to parallelize backtracking based subgraph 

matching algorithms on a single machine. 



Challenges
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l Abstract backtracking based subgraph matching algorithms into an 
uniform model.

l Find a suitable granularity of parallelism in subgraph matching.

l Achieve load balance and reduce overhead introduced by 
parallelization.
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State Space Tree Exploration
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Properties of the State Space Tree
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l There is an exponential
number of nodes in 𝐻.

l The tree 𝐻 has an irregular
shape.

l 𝐻 is flat, i.e., 𝜋 ≪ max
#$%$|'|

|𝐻%|.
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@
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𝑏% 0 < 𝑖 ≤ |𝜋|

𝐻$ is the number of nodes at 
depth 𝑖 in the state space tree 𝐻.
𝑏% is the average branching 
factor of nodes at depth 𝑖 in 𝐻. 



Research Focus of Sequential Algorithms
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l Optimize the matching order.

l Minimize the search breadth (branches) of each state.
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The focus of our paper is to explore the 
tree in parallel. 



Design of Parallel 
Subgraph Matching (PSM)
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Parallel Task – Fine-Grained Parallelism

31

l Observation: Each node (state) can be expanded independently.
l Solution: Regard each node as the basic task unit.
l Cons:

• The fine-grained parallel method results in a large number of light 
weight tasks.

• The approach can incur a high communication overhead.
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• Tick: a solution

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×
v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×
v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and 
𝑣9 due to space 

limit.

𝝅

𝑆



Parallel Task – Coarse-Grained Parallelism
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l Observation: The subtree rooted at a node can be explored 
independently.

l Solution: Regard the subtree rooted at 𝑆, denoted as 𝐻(𝑆), as a 
parallel task. 𝐻(𝑆) can be further divided into more fine grained ones 
by taking part of the candidates, denoted as 𝐻(𝑆, [𝑖: 𝑗]). 
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Parallel Task – Coarse-Grained Parallelism
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l PSM takes coarse-grained tasks instead of fine-grained ones. PSM 
expands each subtree independently in a depth-first search method.
• Example: 𝐻, 𝐻′ and 𝐻"′ can be explored concurrently by different 

workers.



Load Balancing
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l It is hard to assign equal amounts of workload to workers at the 
beginning (static load balancing), because 𝐻 is constructed on the 
fly and irregular.

l PSM designs a dynamic load balancing approach to resolve the 
load imbalance problem.



Load Balancing – Communication Model
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l PSM adopts a decentralized communication model, i.e., PSM has no 
master responsible for assigning tasks.

l PSM adopts a sender-initiated method with a global concurrent queue 
to deliver tasks among workers.
• Busy workers will donate part of its task when they find that the 

queue is empty and there are idle workers.
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l PSM adopts a decentralized communication model, i.e., PSM has no 
master responsible for assigning tasks.

l PSM adopts a sender-initiated method with a global concurrent queue 
to deliver tasks among workers.
• Busy workers will donate part of its task when they find that the 

queue is empty and there are idle workers.
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Load Balancing – Communication Model
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l PSM adopts a decentralized communication model, i.e., PSM has no 
master responsible for assigning tasks.

l PSM adopts a sender-initiated method with a global concurrent queue 
to deliver tasks among workers.
• Busy workers will donate part of its task when they find that the 

queue is empty and there are idle workers.
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Global Concurrent Queue

Worker 1 Worker 2 Worker 3
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Load Balancing – Task Split
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l Goal: Divide the task into two subtasks with nearly equal workload.
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l Goal: Divide the task into two subtasks with nearly equal workload.
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l Goal: Divide the task into two subtasks with nearly equal workload.
l Challenge: As the state space tree is constructed on the fly and 

irregular, it is hard to estimate the workload of a task.
l Heuristic: As the state space tree grows exponentially, the workload 

of the subtree rooted at a shallow depth is much more than that of one 
rooted at a deep depth.

l Solution：Split the branches of a state close to the subtree root 
evenly to generate a new task.

We obtain a new 
task 𝐻(𝑆#, [41,80]).
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l Algorithms Under Study:
• pQSI: QuickSI [3] (VLDB’08) parallelized with PSM;
• pGQL: GraphQL [4] (SIGMOD’08) parallelized with PSM;
• pCFL: CFL [8] (SIGMOD’16) parallelized with PSM;
• PGX [10]: A parallel BFS approach proposed in GRADES’14;
• pRI [11]: A parallel approach proposed in IPDPS’17;

l Experimental Environment:
• All algorithms are implemented in C++. The source code is 

compiled with g++ 4.9.3 with –O3 flag enabled.
• We conduct experiments on a 64-bit Linux machine with 64GB 

RAM and two Intel Xeon E5-2650 v3 CPUs each of which has ten 
2.30GHz physical cores (20 workers by default).
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l Real World Datasets:

l Query Datasets:

𝑉 is the number of vertices.
𝐸 is the number of edges.
|Σ| is the number of distinct labels.
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l The parallel algorithms with PSM achieve a speedup of 15.5X-19.5X 
over the original sequential algorithms.

(a). WordNet (b). Yeast

(c). Youtube (d). US Patents
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l PGX explores the search tree with parallel BFS method. It runs out of 
the memory due to the exponential number of states. We omit its 
experiment results.

l pRI takes each state as the parallel task and explores the search tree 
in DFS.

l For the fair of comparison, we use the same matching order and 
filtering methods in PGX and pRI with that in PSM.

(a). Yeast (b). Youtube
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l Static Load Balancing: Assign the states at depth 1 of the state 
space tree evenly to workers.

l Dynamic Load Balancing: The load balancing strategy proposed in 
PSM.

(a). Yeast (b). Youtube
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(a). Yeast (b). Youtube

l PSM achieve almost linear speedups on the two datasets.
l The speedups with 20 workers are about 16X on Yeast and 17.4X on 

Youtube.
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l The memory consumption of the auxiliary data structures and the 
candidate sets is very small.
• Note: We find the results without materializing the results into file 

systems. 
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l We propose a parallel subgraph matching framework called PSM to 
accelerate backtracking subgraph matching algorithms.

l Extensive experiments on a variety of real world datasets demonstrate 
the efficiency and robustness of PSM.
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