
Scaling Up Subgraph Query Processing with
Efficient Subgraph Matching

Shixuan Sun Qiong Luo
Department of Computer Science and Engineering, Hong Kong University of Science and Technology

{ssunah, luo}@cse.ust.hk

Abstract—A subgraph query finds all data graphs in a graph
database each of which contains the given query graph. Existing
work takes the indexing-filtering-verification (IFV) approach to
first index all data graphs, then filter out some of them based on
the index, and finally test subgraph isomorphism on each of the
remaining data graphs. This final test of subgraph isomorphism is
a sub-problem of subgraph matching, which finds all subgraph
isomorphisms from a query graph to a data graph. As such,
in this paper, we study whether, and if so, how to utilize effi-
cient subgraph matching to improve subgraph query processing.
Specifically, we modify leading subgraph matching algorithms
and integrate them with top-performing subgraph querying
algorithms. Our results show that (1) the slow verification method
in existing IFV algorithms can lead us to over-estimate the gain of
filtering; and (2) our modified subgraph querying algorithms with
efficient subgraph matching are competitive in time performance
and can scale to hundreds of thousands of data graphs and graphs
of thousands of vertices.

I. INTRODUCTION

Given a graph database containing a collection of data
graphs D = {G1, ..., Gn} and a query graph q, a subgraph
query retrieves all data graphs in D that contain q. Subgraph
queries are widely present in real-world applications such
as computer aided design, protein interaction relationship
retrieval, social network analysis and RDF (Resource Descrip-
tion Framework) queries. Deciding whether a query graph q is
a subgraph of a data graph G, i.e., the subgraph isomorphism
problem, is proven to be NP-complete [5]. Thus, it is com-
putationally expensive to conduct this subgraph isomorphism
test against each data graph in D.

To perform subgraph isomorphism tests on as few data
graphs as possible, dozens of algorithms have been proposed
(listed in Table II in Section II), and all of them follow
an indexing-filtering-verification paradigm (IFV). Algorithm
1 illustrates the general procedure of IFV subgraph query
processing methods. Given a graph database D, the first step is
to build an index I on features such as paths, trees and graphs
(Lines 1-3). Typically, I can be abstracted as a key-value
store where the keys are the features f and the corresponding
values are the data graphs containing f . IFV methods process
a query q against D in two steps - filtering and verification.
The filtering step (Lines 5-6) decomposes q into a collection
of features F(q) and obtains a set of data graphs C(q) each of
which contains all the features in F(q) based on I. C(q), called
a candidate set, contains all the data graphs in D that subsume
q, because if a data graph G contains q, G must contain all
the features of q. Therefore, in the verification step, IFV-based

Algorithm 1: The IFV Procedure
1 I: the index of a graph database D;
2 Procedure BuildIndex(D)
3 I ← Build a graph index of D;
4 Function Query(D, I, q)

/* The filtering step */
5 F(q)← Decompose q into a collection of features;
6 C(q)←

⋂
f∈F(q) Lookup(I, f);

/* The verification step */
7 A(q)← ∅;
8 foreach G ∈ C(q) do
9 if V erify(q,G) is true then A(q)← A(q) ∪ {G};

10 return A(q);

methods verify the data graphs in C(q) only, instead of D, with
a subgraph isomorphism test algorithm to get the final answer
set A(q) (Lines 7-9). With such an IFV paradigm, the number
of subgraph isomorphism tests is reduced from |D| to |C(q)|.

Although IFV algorithms have led to significant perfor-
mance improvement, these index-based methods have consid-
erable drawbacks. Firstly, a performance study [15] finds that
these algorithms fail to build indices on large graph databases
in terms of number of distinct labels, number of vertices
in data graphs, density of data graphs and number of data
graphs in D due to their poor time and space efficiency of
index construction. Secondly, as in any index-based methods,
whenever D is modified, I must be updated correspondingly to
guarantee that C(q) obtained in the filtering step containsA(q).
The cost incurred by the index update is high [39]. As such,
IFV algorithms are hardly applicable to graphs that change
frequently, such as networks of purchasing records in online
stores and trading records of shareholders in financial firms.
Finally, the verification step in most of existing algorithms still
adopts the VF2 algorithm [6], which has been outperformed
by the latest subgraph matching algorithms by several orders
of magnitude [1], [23].

Subgraph matching is a topic closely related to subgraph
query processing. It finds all subgraph isomorphisms from
a query graph to a single large data graph. Most subgraph
query algorithms conduct the subgraph isomorphism test by
modifying subgraph matching algorithms to return after find-
ing the first subgraph isomorphism. Recent research efforts
on subgraph matching have led to significant improvement on
the execution time. Moreover, the methodology of subgraph
matching also makes great advancement. Specifically, previous
subgraph matching algorithms such as VF2 adopt the direct-
enumeration method that simply expands partial results recur-
sively along a matching order of query vertices by mapping

query vertices to data vertices to find subgraph isomorphisms.
In contrast, latest algorithms such as GraphQL [14], TurboIso
[11] and CFL [1] adopt the preprocessing-enumeration method
that constructs an auxiliary data structure (e.g., the candidate
vertex set for each query vertex) in the preprocessing phase
before the recursive enumeration to reduce the number of
candidate vertices and optimize the matching order. These
auxiliary data structures in subgraph matching are different
from the index in IFV algorithms: They are light-weight and
dynamically constructed for each query, whereas the index in
IFV is built based on the data graphs to answer all queries.

Unfortunately, the advancement in subgraph matching has
not been utilized by current research on subgraph query
processing. In this paper, we conduct an empirical study on
this problem. Specifically, we experiment on three categories
of subgraph query processing algorithms. The first category
includes three top-performing IFV algorithms CT-Index [20],
Grapes [10] and GGSX [2]. The second category consists
of the vertex connectivity based filtering-verification (vcFV)
subgraph query processing algorithms, which are obtained
by modifying the leading preprocessing-enumeration subgraph
matching algorithms. In particular, we modify CFL [1] and
GraphQL [14] to answer subgraph queries by (1) utilizing their
preprocessing techniques as the filtering method instead of
the index-based filtering in IFV algorithms; and (2) returning
immediately after finding the first subgraph isomorphism in the
enumeration. In the third category, we integrate the IFV algo-
rithms with the vcFV algorithms to get the index and vertex
connectivity based filtering-verification (IvcFV) algorithms.

In summary, we make the following contributions.
• We conduct experiments on real-world datasets with both

sparse and dense query graphs to study the performance
of three categories of subgraph query processing algo-
rithms.

• We evaluate the scalability of the competing algorithms
on a variety of synthetic datasets.

• We reveal the impact of subgraph matching on subgraph
query processing (see Section IV-D).

• We make an initial step towards indexing-free subgraph
query processing by utilizing latest techniques in sub-
graph matching.

Paper Organization. Section II presents preliminaries and
related work. Section III introduces the competing algorithms.
We evaluate the performance of the competing algorithms in
Section IV and conclude in Section V.

II. BACKGROUND

In this section, we first introduce the preliminaries used in
this paper. Then, we present the related work.

A. Preliminaries

In this paper, we focus on the vertex-labeled undirected
graph g = (V,E,L), where V is a set of vertices, E is a set
of edges, and L is a function that associates a vertex u with
a label L(u) ∈ Σ (Σ is the set of labels). A graph database
is a collection of graphs, denoted as D = {G1, G2, ..., Gn}.

TABLE I: Notations.
Notations Descriptions
ϕ subgraph isomorphism
D graph database
Σ label set
g, q and G graph, query graph and data graph
A(q) and C(q) answer set and candidate set of q
f and F(q) feature and feature set of q
V (g) and E(g) vertex set and edge set of g
d(u), L(u) and N(u) degree, label and neighbors of u
e(u, v) edge connecting vertices u and v
Φ and Φ(u) candidate vertex set and candidate vertex set of u

We call a graph G ∈ D a data graph. The query graph q is
connected. In the following, we give a formal definition of
subgraph query and related preliminaries used in this paper,
and list the frequently used notations in Table I.

Definition II.1. Subgraph Isomorphism: Given graphs g =
(V,E, L) and g′ = (V ′, E′, L′), a subgraph isomorphism
from g to g′ is an injective function ϕ : V → V ′ that
satisfies: (1) ∀u ∈ V,L(u) = L′(ϕ(u)); and (2) ∀e(u, u′) ∈
E, e(ϕ(u), ϕ(u′)) ∈ E′.

If there exists a subgraph isomorphism from g to g′, then
g is subgraph-isomorphic to g′, denoted as g ⊆ g′.

A

B D

C

0u

1u

2u

3u

(a) Query graph q.

A

B D

C

A

C

D

0v

1v

2v

3v

4v

5v

6v

(b) Data graph G.
Fig. 1: Example graphs.

Example II.1. Given q and G in Figure 1, ϕ = {(u0, v0),
(u1, v1), (u2, v2), (u3, v3)} is a subgraph isomorphism from q
to G. Then, q is subgraph-isomorphic to G.

Definition II.2. Subgraph Query: Given a graph database
D = {G1, G2, ..., Gn} and a query graph q, a subgraph query
finds all data graphs G in D such that q ⊆ G.

Definition II.3. Subgraph Matching: Given a data graph G
and a query graph q, subgraph matching finds all subgraphs
in G that are isomorphic to q.

B. Related Work

In this section, we introduce the work related to this paper.
1) Subgraph Query: Table II lists 15 existing subgraph

query processing algorithms. All of them follow the IFV
paradigm with differences on the structure of index features
(e.g., path, tree, cycle or graph) and the method of feature
extraction. In the following, we briefly introduce the properties
of mining-based and enumeration-based algorithms.

Mining-based Approaches. Mining-based methods extract
”frequent” features to construct indices based on graph mining.
A feature is regarded as frequent if the support ratio, which is
the percentage of data graphs in the graph database containing
the feature, is above a threshold. Except for the support ratio,
a discriminative ratio, which is an algorithm-specific metric to

TABLE II: A list of IFV algorithms.
Algorithm Feature

Extraction
Feature
Structure

Index Storage

GraphGrep [30] Enumeration Path Memory
GraphGrepSX [2] Enumeration Path Memory
Grapes [10] Enumeration Path Memory
SING [7] Enumeration Path Memory
CT-Index [20] Enumeration Tree/Cycle Memory
GDIndex [35] Enumeration Graph Memory
GCode [43] Enumeration Graph Memory
SwiftIndex [28] Mining Tree Memory
TreePi [40] Mining Tree Memory
Tree+Delta [42] Mining Tree/Graph Memory
CP-Index [36] Mining Graph Memory
gIndex [37] Mining Graph Memory
FG-Index [4] Mining Graph Memory/Disk
FG*-Index [3] Mining Graph Memory/Disk
Lindex+ [38] Mining Graph Memory/Disk

measure the filtering power of a feature, is another threshold
to determine whether this feature should be included in the
index. These parameters control the trade-off between the
complexity of feature extraction (i.e., both time and space) and
the filtering power of indices. However, several performance
studies show that mining-based methods consume too much
time to build indices due to the expensive mining operations,
and the parameters are hard to specify [10], [12], [15], [20].

Enumeration-based Approaches. The enumeration-based
approaches exhaustively enumerate all specified features and
store them into indices. The index construction of these meth-
ods is faster than that of mining-based, but the resulting indices
are of a large size and consume a great amount of memory to
construct. Therefore, this kind of algorithms generally adopt
simpler feature structures such as paths and cycles than the
mining-based. Also, they require users to specify the sizes of
features, e.g., the number of vertices or the number of edges,
to balance the filtering power and the index size.

Additionally, because the sizes of indices can be exponential
to the sizes of data graphs, some algorithms [3], [4], [38]
design indices that leverage both the memory and disk. As
the graph database itself consumes a small amount of memory
space compared with the indices (see Tables VII and IX in
Section IV), we assume that it fits into memory.

Other Approaches. Wang et al. [33], [34] proposed a
graph cache system to improve the performance of subgraph
query processing. A recent work [16] proposed to integrate
the indexing-filtering strategy in IFV methods with subgraph
matching algorithms to boost the performance of subgraph
matching on a collection of data graphs. In particular, this
approach first obtains the candidate graphs with the indexing-
filtering method and then performs subgraph matching on
the candidate graphs instead of all data graphs. In contrast,
we propose the vcFV framework to utilize the preprocessing
strategy in the state-of-the-art subgraph matching algorithms
as a filtering method instead of the index-based filtering to
address the problems caused by the index in IFV methods.

2) Subgraph Matching: We categorize the subgraph match-
ing algorithms into direct-enumeration and preprocessing-
enumeration based on their execution phases.

Direct-enumeration Approaches. The direct-enumeration
approaches such as Ullmann [32], VF2 [6], QuickSI [28] and
SPath [41] do not construct any auxiliary data structure given

a query graph before enumeration, but obtain the candidate
data vertices of each query vertex individually based on
filters such as the neighborhood signature. Due to the lack
of accurate information to estimate cost, the matching order
can be ineffective and there may be many false positive
candidate data vertices. A detailed performance study [23]
shows that these algorithms have problems in their matching
order selection, and signature-based filters are only effective
for some datasets.

Preprocessing-enumeration Approaches. To address the
problems in the direct-enumeration algorithms, researchers
proposed to divide subgraph matching into two phases, which
first construct an auxiliary data structure given a query graph
and then conduct enumeration based on the auxiliary data
structure. The auxiliary data structure not only reduces the
candidates but also provides accurate cost estimation to gen-
erate an effective matching order. GraphQL [14] proposed the
pseudo subgraph isomorphism test based method to generate
the candidate vertex sets for each query vertex, and designed
the join-based ordering strategy. TurboIso [11] designed the
tree-structured auxiliary data structure, candidate region, and
generated the matching order by the path-based ordering
strategy. CFL [1], the state-of-the-art algorithm, accelerated
subgraph matching by postponing cartesian products with a
matching order that prioritizes the query vertices in the core
structure, and proposed a new tree-structured auxiliary data
structure CPI. These approaches achieved impressive speedups
over the direct-enumeration algorithms such as VF2.

Other Approaches. Some researchers improved subgraph
matching by exploiting the vertex relationship in the data
graphs [24], [26], utilizing the matching results among multi-
ple queries [27] and parallelizing the algorithms in a single
machine as well as the distributed environment [19], [31].
Also, researchers considered the confidentiality of the sub-
graph queries in a graph database [9].

Finally, subgraph matching can also be done on unlabeled
graphs. Due to the lack of the label information, the search
space of unlabeled subgraph matching is much larger than
that of labeled. Moreover, unlabeled subgraph matching is
generally used as an offline analysis task, whereas subgraph
query and labeled subgraph matching are integrated as a query
operation in a graph database. To handle the large search space,
most research focuses on distributed environments [21], [22],
[25], [29], and other work deals with large graphs that exceed
the main memory [18].

III. COMPETING ALGORITHMS

In this paper, we study eight subgraph query processing
algorithms in three categories based on their execution phases.

A. IFV Algorithms

Previous performance studies [12], [15] compared the per-
formance of nine algorithms to cover as much of the de-
sign space of subgraph query processing algorithms (e.g.,
enumeration-based or mining-based, the feature structure and
the index structure) as possible. The nine algorithms are

Grapes, GraphGrepSX, CT-Index, gIndex, GCode, Tree+Delta,
SwiftIndex, TreePi and FG-Index. Among the nine algorithms,
Grapes, GGSX and CT-Index perform better than the other
algorithms on a variety of metrics such as indexing time,
query time, filtering precision and scalability [15]. Following
previous work, we select these three algorithms to compare in
our experiments.

Grapes [10]. Grapes is a parallel algorithm working
in multi-core machines with the index constructed by an
enumeration-based strategy. It adopts the path as the indexing
feature and exhaustively enumerates paths of up to a maximum
length. The index is stored as a trie. Grapes adopts VF2 to
verify whether candidate graphs contain the query graph.

GGSX [2]. GraphGrepSX has an index constructed by an
enumeration-based strategy, whose basic feature is the path.
The index is stored as a suffix tree. The verification phase of
GGSX also uses VF2.

CT-Index [20]. The index structure is constructed by an
enumeration-based strategy, whose basic features contain trees
and cycles. The index is stored as a hash set of fingerprints.
The verification of CT-Index is a modified VF2 that adopts
additional heuristics to optimize the matching order.

B. vcFV Algorithms

A naive method using subgraph matching algorithms to
answer subgraph queries is as follows: (1) Modify subgraph
matching algorithms to immediately return after finding the
first subgraph isomorphism; and (2) Execute the modified
algorithm against each data graph in D to find the data graphs
containing the given q. As the subgraph isomorphism problem
is NP-complete, conducting subgraph isomorphism test on
each data graph could be time-consuming. However, we find
the recently proposed preprocessing-enumeration subgraph
matching algorithms provides a different strategy.

Specifically, the preprocessing-enumeration subgraph
matching algorithms such as GraphQL [14], TurboIso [11]
and CFL [1] introduce a preprocessing phase before the
enumeration in order to reduce the size of candidates for
each query vertex and obtain accurate statistics to optimize
the matching order. In particular, the preprocessing phase is
to generate a complete candidate vertex set (Definition III.1)
for each query vertex.

Definition III.1. Complete Candidate Vertex Set: Given q and
G, a candidate vertex set Φ(u) for u ∈ V (q) is complete
if Φ(u) satisfies: If a mapping (u, v) exists in a subgraph
isomorphism from q to G where v ∈ V (G), then v ∈ Φ(u). If
∀u ∈ V (q), Φ(u) is complete, then we say Φ is complete.

Example III.1. Given q and G in Figure 1, suppose that
Φ(u0) = {v0, v4}, Φ(u1) = {v1}, Φ(u2) = {v2} and
Φ(u3) = {v3}. Φ is complete, because for each u ∈ V (q),
Φ(u) satisfies that if a mapping (u, v) exists in a subgraph
isomorphism from q to G, then v ∈ Φ(u).

Based on Definition III.1, the following proposition holds.

Algorithm 2: The vcFV Procedure
Input: a query graph q and a graph database D
Output: an answer set A(q) keeping all data graphs in D that contain q

1 begin
2 A(q)← ∅;
3 foreach G ∈ D do
4 Φ← Filter(q, G);
5 if ∀u ∈ V (q),Φ(u) 6= ∅ then
6 if Verify(q, G, Φ) is true then
7 A(q)← A(q) ∪ {G};
8 return A(q);

Proposition III.1. Given q and G, suppose that Φ is complete.
If there exists a query vertex u ∈ V (q) such that Φ(u) is empty,
then there is no subgraph isomorphism from q to G.

Proof. Given q and G, Φ is a complete candidate vertex set.
Suppose there exists a subgraph isomorphism ϕ from q to G
and there exists u ∈ V (q) such that Φ(u) is empty. By Defini-
tion III.1, Φ(u) contains ϕ(u), which contradicts that Φ(u) is
empty. Thus, the proposition is proved by contradiction.

Given q and G ∈ D, Φ is complete. If ∃u ∈ V (q),Φ(u) =
∅, then G must not contain q and we do not need to
conduct a subgraph isomorphism test against G. Therefore,
when using the preprocessing-enumeration subgraph matching
algorithms to answer subgraph queries, we can follow the
filtering-verification paradigm whose filtering is based on the
vertex connectivity, i.e., the candidate vertex sets generated
based on the structure of q and G, instead of the index. In
order to differentiate with the IFV algorithms as well as the
direct-enumeration subgraph matching algorithms, we say that
the preprocessing-enumeration algorithms follow the vertex
connectivity based filtering-verification (vcFV) framework and
call them the vcFV algorithms in this paper.

Because the preprocessing-enumeration subgraph matching
algorithms construct the candidate vertex sets anyway before
the enumeration, one approach would be to simply regard
these algorithms as a black box and directly run them on each
data graph. In contrast, we apply this strategy but separate the
process into two phases. This way we can easily examine the
bottleneck of subgraph query processing, the filtering precision
or the performance of the verification.

Algorithm 2 outlines the vcFV framework in which the
Filter function is the preprocessing phase of the integrated
subgraph matching algorithms and the Verify function is the
enumeration phase that returns after finding the first subgraph
isomorphism. We regard data graphs passing the check of line
5 as the candidate set C(q) of vcFV algorithms.

According to Algorithm 2, if the Filter function can obtain
a minimum complete candidate vertex set (Definition III.2),
then we can avoid the verification. However, reducing the
construction of a minimum complete candidate vertex set to
the subgraph isomorphism problem, we have Proposition III.2.
This is also why the preprocessing-enumeration algorithms
construct a complete candidate vertex set based on some
heuristics instead of building a minimum one.

Definition III.2. Minimum Complete Candidate Vertex Set:
Given q and G, a complete candidate vertex set Φ is minimum

if Φ satisfies that for every query vertex u ∈ V (q), if v ∈ Φ(u),
then the mapping (u, v) belongs to a subgraph isomorphism
from q to G.

Proposition III.2. Given q and G, finding a minimum com-
plete candidate vertex set is NP-hard.

In this paper, we select GraphQL [14] and CFL [1] as
representatives to study the vcFV category of subgraph query
processing algorithms, because previous work [17], [23] shows
that GraphQL works well on small data graphs and CFL is the
state-of-the-art subgraph matching algorithm. Moreover, we
integrate the preprocessing phase in CFL with the enumeration
phase of GraphQL to obtain a new algorithm called CFQL,
taking advantage of both CFL and GraphQL.

GraphQL [14]. The Filter function (i.e., the preprocessing
phase in GraphQL) obtains the complete candidate vertex sets
in two steps. The first step is to generate a candidate vertex set
for each query vertex based on the neighborhood profiles (i.e.,
the label information of neighbor vertices). The second step
is to prune the candidate vertex set based on an approximate
subgraph isomorphism algorithm [13] that works as follows:
(1) Given v ∈ Φ(u), construct a bigraph with N(u) and N(v)
as bipartitions where an edge is added between u′ ∈ N(u) and
v′ ∈ N(v) if v′ ∈ Φ(u′), denoted as B; (2) Perform maximum
bigraph matching to check whether there exists a semi-perfect
matching in B, i.e., every vertex in N(u) is matched; and
(3) If not, remove v from Φ(u). The space complexity of the
Filter function is O(|V (q)|×|V (G)|). The time complexity of
the Filter function is O(|V (q)| × |V (G)| ×Θ(dq, dG)) where
dq and dG are the average degrees of q and G respectively.
Θ is the time complexity of the maximum bigraph matching.
In our implementation, we use a breadth-first search based
maximum bigraph matching algorithm whose time complexity
is O(|V (B)|× |E(B)|), because a detailed performance study
of maximum bigraph matching algorithms shows that this
algorithm has a reasonable performance and it is easy to
implement [8]. Because GraphQL does not specify the order of
generating/pruning candidate vertex sets, our implementation
conducts the generating/pruning along the ascending order of
the query vertex ids.

The Verify function (i.e., the enumeration phase in
GraphQL) adopts the join-based ordering strategy. This or-
dering strategy generates a matching order by picking a query
vertex with the minimum number of candidates from the
neighbors of the selected query vertices at each step.

CFL [1]. The Filter function (i.e., the preprocessing phase
in CFL) constructs complete candidate vertex sets based on
the following observation: Given q and G, suppose that Φ is
a complete candidate vertex set. If a mapping (u, v) exists in
a subgraph isomorphism from q to G where v ∈ Φ(u), then
∀u′ ∈ N(u), N(v)∩Φ(u′) 6= ∅. According to this observation,
given v ∈ Φ(u), v can be safely removed if there exists a query
vertex u′ ∈ N(u) such that N(v) ∩ Φ(u′) = ∅. Equivalently,
given a query vertex u, Φ(u) can be obtained by intersecting
the sets of neighbors, with label L(u), of vertices in Φ(u′)
for all u′ ∈ N(u). CFL first generates a BFS (Breadth-first

TABLE III: A summary of competing algorithms.
Category Algorithm Indexing Filtering Verification

IFV
CT-Index Hashset Index VF2
Grapes Trie Index VF2
GGSX Suffix tree Index VF2

vcFV
CFL N/A Preprocesing of CFL Enumeration

of CFL
GraphQL N/A Preprocesing of GraphQL Enumeration

of GraphQL
CFQL N/A Preprocesing of CFL Enumeration

of GraphQL

IvcFV vcGrapes Trie Index and
preprocesing of CFL

Enumeration
of GraphQL

vcGGSX Suffix tree Index and
preprocesing of CFL

Enumeration
of GraphQL

search) tree qt from q. Then, it obtains Φ in two steps based
on the observation: (1) Generate a complete candidate vertex
set for each query vertex along qt level-by-level in a top-down
manner, in which CFL also conducts backward pruning at each
level based on the non-tree edges; and (2) Refine Φ along
qt in a bottom-up order. The time complexity of the Filter
function is O(|E(q)| × |E(G)|) and the space complexity is
O(|V (q)| × |E(G)|).

The Verify function (i.e., the enumeration phase in CFL)
adopts the path-based ordering strategy. This strategy gener-
ates the matching order by sorting the paths in qt based on the
information of candidate vertex sets. Moreover, the matching
order of CFL prioritizes the vertices in the core structure (i.e.,
2-core) of q.

CFQL. Given q and G, the performance of the Verify
functions can differ greatly between algorithms because of
their different ordering strategies. If a Verify function performs
well on a variety of data graphs and query graphs, we say
the Verify function is robust. We integrate the Filter function
of CFL with the Verify function of GraphQL to obtain a
new vcFV algorithm called CFQL, because our experimental
results show that the Filter function of CFL runs faster than
that of GraphQL, and the Verify function of GraphQL is more
robust than that of CFL.

C. IvcFV Algorithms

A general idea to improve the performance of existing
IFV algorithms is to replace VF2 in the verification with the
state-of-the-art subgraph matching algorithm. Our experimen-
tal results show that CFQL that integrates the preprocess-
ing of CFL with the enumeration of GraphQL can perform
well. Therefore, we integrate CFQL into Grapes and GGSX.
Because Grapes and GGSX have the index-based filtering
whereas CFQL has the vertex connectivity based filtering, the
integrated algorithms have two levels of filtering with one level
index-based and the other vertex connectivity based. We call
the integrated methods the IvcFV methods and denote them as
vcGrapes and vcGGSX. We do not integrate with CT-Index in
this category, as its indexing phase often fails on large datasets,
which results in failing to answer queries on those datasets.

D. Summary of Competing Algorithms

Table III summarizes the eight competing algorithms in this
paper. The three IFV algorithms conduct the filtering based on
the indices and verify the existence of the query graph with

VF2. The vcFV algorithms do not build any indices, but filter
based on the preprocessing method of the integrated subgraph
matching algorithm. We modify the enumeration phase of the
corresponding subgraph matching algorithm to immediately
return after finding the first subgraph isomorphism as the
verification function. The IvcFV algorithms first filter based
on the index and then the preprocessing phase of the integrated
subgraph matching algorithm.

IV. EXPERIMENTS

In this section, we evaluate the performance of the compet-
ing algorithms.

A. Experimental Setup

Algorithm Configuration. The parameter values of Grapes,
GGSX and CT-Index are configured the same as the previous
work [15], since we use the same real-world dataset and syn-
thetic dataset generator. As the indexing methods of vcGrapes
and vcGGSX are the same as Grapes and GGSX respectively,
they adopt the same configuration as their original version.
The vcFV algorithms do not require any input configuration.
The following is algorithm-specific parameter setting.
• Grapes, vcGrapes: We use 6 threads and enumerate paths

of up to a length of 4.
• GGSX, vcGGSX: We enumerate paths of up to a length

of 4.
• CT-Index: We create 4096-bit fingerprints by enumerating

trees and cycles of up to a length of 4.
Experiment Environment. We obtain the source code of

Grapes and GGSX from their authors respectively, and obtain
an executable binary of CT-Index from its author. Grapes and
GGSX are implemented in C++, and the binary of CT-Index
is based on JAVA. We implement the other algorithms in
C++. We compile the source code of algorithms implemented
in C++ with g++ 4.9.3 with the -O3 flag. We perform all
experiments on a 64-bit Linux machine equipped with two
Intel Xeon E5-2650 V3 processors and 64GB RAM.

Datasets. We conduct experiments on both real-world and
synthetic datasets.

Real-world Datasets: We obtain all real-world datasets used
in the performance study [15] from its author, which are AIDS,
PDBS, PCM and PPI. AIDS contains topological structures
of molecules. PDBS is a set of graphs representing DNA,
RNA and proteins. PCM is a collection of graphs representing
protein interaction maps. PPI is also a dataset representing
protein interaction networks, but the networks are much larger
than those in PCM. The statistics of these real-world datasets
is listed in Table IV.

Synthetic Datasets: To be consistent with experiments in
previous research [12], [15], we use GraphGen [4], a tool
that can generate a collection of data graphs with parameters
such as #graphs, #labels, and density, to generate a variety
of synthetic datasets. Specifically, we vary the number of
graphs |D|, the number of vertices in a data graph |V (G)|, the
number of distinct labels |Σ| and the degree of data graphs
d(G) respectively to examine the scalability. A challenging

TABLE IV: Statistics of the real-world datasets.
AIDS PDBS PCM PPI

#graphs 40,000 600 200 20
#labels 62 10 21 46

#vertices per graph 45 2,939 377 4,942
#edges per graph 46.95 3,064 4,340 26,667
degree per graph 2.09 2.06 23.01 10.87
#labels per graph 4.4 6.4 18.9 28.5

problem is to set the default values for these parameters such
that we can demonstrate the capabilities of the algorithms
without breaking most of them. Katsarou et al. [15] carefully
examined the scalability of the index-based algorithms with
GraphGen, and computed a set of ”sane defaults” as follows:
|D| = 1000, |V (G)| = 200, |Σ| = 20 and density=0.025
(i.e., 2×|E(G)|

|V (G)|×(|V (G)|−1)). In our experiment, we use degree

(i.e., 2×|E(G)|
|V (G)|) instead of density, because given a fixed value

of density, a linear increase of |V (G)| results in a quadratic
increase of |E(G)|. Thus, we set |D| = 1000, |Σ| = 20,
|V (G)| = 200 and d(G) = 8 as default (different from the
”sane defaults”, we increase d(G) from 5 to 8 to stress test
scalability), and vary the parameters as follows:

• Vary |D|: We generate 5 datasets with |D| as 102, 103,
104, 105 and 106 respectively.

• Vary |Σ|: We generate 5 datasets with |Σ| as 1, 10, 20,
40 and 80 respectively.

• Vary |V (G)|: We generate 5 datasets with |V (G)| as 50,
200, 800, 3200 and 12800 respectively.

• Vary d(G): We generate 5 datasets with d(G) as 4, 8, 16,
32 and 64 respectively.

Query Sets. To examine the algorithms comprehensively,
we generate query graphs with two methods used in previous
work: random walk [12], [15], [17] and breadth-first search
[33], [34]. The random walk method works as follows:

1) Select a data graph from D at random;
2) Select a vertex from the selected graph at random;
3) Starting from the selected vertex, perform a random walk

and add the edges and vertices visited to the graph;
4) When the desired number of edges is reached, terminate

and return the graph.

The breadth-first search method is the same as the random
walk except Step 3: Starting from the selected vertex, perform
a breadth-first search and whenever a new vertex is visited,
add both this vertex and all its edges to visited vertices into
the graph.

Given a dataset, we generate 8 query sets, including 4 with
random walk and 4 with breadth-first search. Each query set
contains 100 query graphs with the same number of edges.
Because the query graphs generated by random walk are
sparser than those obtained by breadth-first search, we use QiS

(Sparse) to represent a query set generated by random walk
with i−edges and QiD (Dense) to denote that generated by
breadth-first search. The statistics of query sets on real-world
datasets is shown in Table V, where % of trees denotes the
percentage of query graphs with a tree structure (i.e., query
graphs that have no cycles) in a query set. As the statistics of
query sets for synthetic datasets has the same trend as that on
real-world datasets, we omit the statistics for brevity.

TABLE V: Statistics of query sets on the real-world datasets.
AIDS PDBS

Q4S Q8S Q16S Q32S Q4D Q8D Q16D Q32D Q4S Q8S Q16S Q32S Q4D Q8D Q16D Q32D

|V | per q 5.00 8.92 16.29 31.30 4.99 6.00 9.66 18.16 4.95 8.80 16.41 32.13 4.93 5.99 9.45 18.90
|Σ| per q 2.41 2.88 3.58 4.15 2.37 2.11 1.99 2.76 2.43 2.96 3.45 3.73 2.45 2.00 2.56 3.23
d per q 1.60 1.80 1.97 2.05 1.60 2.67 3.32 3.62 1.62 1.83 1.96 2.00 1.63 2.67 3.41 3.44

% of trees 1.00 0.92 0.38 0.14 0.99 0.00 0.00 0.00 0.95 0.85 0.72 0.58 0.93 0.00 0.00 0.00

PCM PPI
Q4S Q8S Q16S Q32S Q4D Q8D Q16D Q32D Q4S Q8S Q16S Q32S Q4D Q8D Q16D Q32D

|V | per q 4.96 8.48 15.49 29.47 4.00 5.20 7.20 10.11 4.98 8.75 16.13 30.86 4.51 5.60 9.02 16.44
|Σ| per q 4.34 6.64 10.18 14.06 3.65 4.43 5.82 7.77 3.28 4.71 6.63 8.43 3.20 3.86 4.85 6.57
d per q 1.62 1.92 2.09 2.19 2.00 3.09 4.46 6.39 1.61 1.83 1.99 2.09 1.80 2.88 3.59 4.06

% of trees 0.96 0.66 0.22 0.04 0.00 0.00 0.00 0.00 0.98 0.77 0.50 0.22 0.51 0.00 0.00 0.00

Metrics. Given a dataset, the time limit for the index
construction is 24 hours. The time limit for processing a
query is 10 minutes (i.e., 6× 105 ms). If an algorithm cannot
complete the query within the time limit, we record it as 10
minutes for comparison purpose. Moreover, if an algorithm
fails to complete more than 40% queries in a query set, then
we omit its experiment results on the query set. All algorithms
maintain both the index, if present, and the data graphs in
memory, and we exclude the time of loading the data from
the disk. The used metrics are listed as follows.

• Indexing Time: Time spent on index construction.
• Query Time: Time spent on processing a query graph,

consisting of both filtering time and verification time.
• Filtering Time: Time spent on the filtering step. For vcFV

and IvcFV algorithms, we take the time on extracting
complete candidate vertex sets as part of the filtering time,
because extracting complete candidate vertex sets is part
of the filtering step of these algorithms.

• Verification Time: Time spent on the verification step.
• Filtering Precision: Given a query set Q on a dataset, the

filtering precision on Q is computed as follows:

Filtering Precision =
1

|Q|
∑
q∈Q

|A(q)|
|C(q)|

. (1)

• Memory Cost1: The space cost of the auxiliary data
structures: the candidate vertex sets for vcFV algorithms,
and the indices for Grapes, GGSX and CT-Index.

Additionally, the verification time of a query q on a dataset
D is computed as follows:

Tverification(D, q) =
∑

G∈C(q)

Tverify(G, q). (2)

The verification time depends on both the number of candi-
date graphs and the efficiency of the subgraph isomorphim
(shortened as SI in the following) algorithm. In order to
examine the effects of these two factors, we further evaluate
the following two metrics.

• |C(q)|: The average number of candidate graphs obtained
by a query graph in the query set.

1The memory cost of CT-Index is examined by JProfiler. The other
algorithms are examined by checking the statistics in the /proc/pid file during
the run time.

TABLE VI: Indexing time on real-world datasets(seconds).
AIDS PDBS PCM PPI

CT-Index 225 1,714 OOT OOT
GGSX 8 5 433 2,209
Grapes 6 1 66 223

• Per SI Test Time: The average time spent on the subgraph
isomorphism test on a candidate graph in the candidate
set, which is computed as follows:

Per SI Test T ime =
1

|Q|
∑
q∈Q

Tverification(D, q)

|C(q)|
. (3)

B. Results on Real-world Datasets

In this subsection, we study the performance of competing
algorithms on the real-world datasets.

1) Evaluation of index construction: Table VI lists the
indexing time on the real-world datasets. As the vcFV al-
gorithms have no indexing step, there is no results of the
vcFV algorithms in the table. Because the indexing phases of
vcGrapes and vcGGSX are the same as their original versions,
we omit the experimental results of their index construction,
for example the indexing time and the memory cost, in this
study. CT-Index takes much more time to construct indices
than the other two algorithms, because it takes trees and cycles
as features, which are more complex than paths used in both
Grapes and GGSX. CT-Index fails to build indices on PCM
or PPI within 24 hours so the indexing time is marked as
out-of-time (OOT).

2) Evaluation of the filtering step: The main objective of
the filtering-verification paradigm including IFV, vcFV and
IvcFV is to reduce the number of candidate graphs. Figure 2
shows the filtering precision on the real-world datasets. The
first three bars are IFV algorithms, the next three are vcFV
algorithms and the last two are IvcFV algorithms. There are
some missing bars, as GGSX and Grapes fail to complete large
queries on PPI because of the slow verification, and CT-Index
cannot support the queries on PCM and PPI due to the lack
of indices.

There is no single winner for all cases. Generally, the
filtering precision of the competing algorithms is higher on
the dense query graphs than that of sparse queries, because
dense query graphs provide more features for the index-
based filtering, and the vertex connectivity based filtering
performs better with the query vertex having more neighbors.
Among IFV algorithms, CT-Index outperforms Grapes and
GGSX, because its complex indexing feature has stronger
filtering power. The filtering precision of vcFV algorithms is

4S 8S 16S 32S 4D 8D 16D 32D
0.0

0.2

0.4

0.6

0.8

1.0
Fi

lt
e
ri

n
g
 P

re
ci

si
o
n

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(a) AIDS (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

0.0

0.2

0.4

0.6

0.8

1.0

Fi
lt

e
ri

n
g
 P

re
ci

si
o
n

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(b) PDBS (vary |E(q)|)

4S 8S 16S 32S 4D 8D 16D 32D
0.0

0.2

0.4

0.6

0.8

1.0

Fi
lt

e
ri

n
g
 P

re
ci

si
o
n

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(c) PCM (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

0.0

0.2

0.4

0.6

0.8

1.0

Fi
lt

e
ri

n
g
 P

re
ci

si
o
n

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(d) PPI (vary |E(q)|)
Fig. 2: Filtering precision on the real-world datasets.

4S 8S 16S 32S 4D 8D 16D 32D
100

101

102

103

Fi
lt

e
ri

n
g
 T

im
e
 (

m
s)

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(a) AIDS (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

100

101

102

103

Fi
lt

e
ri

n
g
 T

im
e
 (

m
s)

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(b) PDBS (vary |E(q)|)

4S 8S 16S 32S 4D 8D 16D 32D
100

101

102

Fi
lt

e
ri

n
g
 T

im
e
 (

m
s)

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(c) PCM (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

100

101

102

Fi
lt

e
ri

n
g
 T

im
e
 (

m
s)

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(d) PPI (vary |E(q)|)
Fig. 3: Filtering time on the real-world datasets.

competitive with that of IFV algorithms, which shows that the
vertex connectivity based filtering can also achieve reasonable
filtering power. As the filtering, i.e., the preprocessing phase,
of CFL and GraphQL is based on heuristics, e.g., different
preprocessing orders of query vertices, there is no guarantee
on which one is better. Because the filtering precision of CFQL
is higher than that of both Grapes and GGSX, integrating
with CFQL makes both vcGrapes and vcGGSX achieve a
significantly higher filtering precision than Grapes and GGSX
respectively, and slightly higher than CFQL.

Figure 3 presents the filtering time on the real-world
datasets. The filtering time of IFV algorithms increases with
the query size, because there are more features in large queries.
In contrast, vcFV algorithms generally take less time on
dense queries with the query size increase. This result is
because the vertex connectivity based filtering method in vcFV
has stronger filtering power when query vertices have more
neighbors so that an invalid data graph can be ruled out at
an early stage. Among vcFV algorithms, CFL outperforms
GraphQL, because the time complexity of the filtering of CFL
is better than that of GraphQL.

The filtering time of IvcFV algorithms is expected to be less
than that of CFQL, because CFQL conducts the filtering on all
data graphs, whereas the vertex connectivity based filtering in
IvcFV algorithms processes |C′(q)| data graphs that pass the
index-based filtering. However, the experimental results show
that the filtering time of IvcFV algorithms is longer than that
of CFQL. There are two reasons for this phenomenon. The

first one is that the filtering time of CFQL can be shorter than
that of the index based filtering (e.g., dense queries on AIDS)
because the time complexity of the filtering in CFQL is good.
The second one is that given q and D, CFQL spends most
of its filtering time on the candidate data graphs, because for
the non-candidate data graph, the filtering of CFQL returns
immediately after finding that the candidate vertex set of a
query vertex is empty instead of constructing candidate vertex
sets for each query vertex. Also, the filtering precision of
CFQL is higher than both Grapes and GGSX. Overall, because
the time complexity of the filtering method of the competing
algorithms is polynomial to the input graph size, the filtering
time on all cases is less than 1 second (most less than 0.1
second). Therefore, the absolute value of the filtering time is
small.

3) Evaluation of the verification step: Figure 4 presents
the verification time on the real-world datasets. Both vcFV
and IvcFV algorithms that adopt the state-of-the-art subgraph
matching algorithms consistently outperform IFV algorithms
that use VF2. As both the number of candidate graphs and the
efficiency of verification methods can affect the verification
time, we show the results on these two factors in Figure 5
and 6 respectively. Benefiting from the integrated efficient
subgraph matching algorithm, the vcFV and IvcFV algorithms
outperform existing algorithms by up to four orders of mag-
nitude in terms of per SI test time. Because the number of
candidate graphs of vcFV and IvcFV algorithms is close to
that of IFV algorithms on most cases as shown in Figure 6,

4S 8S 16S 32S 4D 8D 16D 32D
10-2

10-1

100

101

102

103
V

e
ri

fi
ca

ti
o
n
 T

im
e
 (

m
s)

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(a) AIDS (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

10-2

10-1

100

101

102

103

104

105

V
e
ri

fi
ca

ti
o
n
 T

im
e
 (

m
s)

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(b) PDBS (vary |E(q)|)

4S 8S 16S 32S 4D 8D 16D 32D
10-2

10-1

100

101

102

103

104

105

V
e
ri

fi
ca

ti
o
n
 T

im
e
 (

m
s)

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(c) PCM (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

10-2

10-1

100

101

102

103

104

105

V
e
ri

fi
ca

ti
o
n
 T

im
e
 (

m
s)

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(d) PPI (vary |E(q)|)
Fig. 4: Verification time on the real-world datasets.

4S 8S 16S 32S 4D 8D 16D 32D
10-4

10-3

10-2

10-1

100

101

P
e
r

S
I
T
e
st

 T
im

e
 (

m
s)

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(a) AIDS (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

10-4

10-3

10-2

10-1

100

101

102

P
e
r

S
I
T
e
st

 T
im

e
 (

m
s)

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(b) PDBS (vary |E(q)|)

4S 8S 16S 32S 4D 8D 16D 32D
10-3

10-2

10-1

100

101

102

103

P
e
r

S
I
T
e
st

 T
im

e
 (

m
s)

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(c) PCM (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

10-2

10-1

100

101

102

103

104

P
e
r

S
I
T
e
st

 T
im

e
 (

m
s)

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(d) PPI (vary |E(q)|)
Fig. 5: Per SI test time on the real-world datasets.

4S 8S 16S 32S 4D 8D 16D 32D
100

101

102

103

104

105

|C
(q

)|

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(a) AIDS (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

100

101

102

103

|C
(q

)|

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(b) PDBS (vary |E(q)|)

4S 8S 16S 32S 4D 8D 16D 32D
100

101

102

103

|C
(q

)|

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(c) PCM (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

0

5

10

15

20

|C
(q

)|

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(d) PPI (vary |E(q)|)
Fig. 6: The number of candidate graphs on the real-world datasets.

the performance improvement of the verification step is due
in large part to the subgraph matching algorithm.

The per SI test time of CFQL is less than that of CFL,
which shows that the join-based ordering in GraphQL tends
to be better than the path-based ordering of CFL. Moreover,
CFL fails to complete 26 queries of the total 3200 queries
within the time limit, whereas CFQL fails to finish 15 queries.
This result shows that the join-based ordering is more robust
than the path-based ordering. CFQL takes very little time to
conduct SI test on a data graph in AIDS, PDBS and PCM,
which either has a small degree value or has a small number
of vertices. Comparing the filtering time in Figure 3 with
the verification time in Figure 4, we find that although the
subgraph isomorphism problem is NP-complete, the filtering
time is more than the verification time on AIDS, PDBS and

PCM. However, on some challenging datasets, the verification
still consumes a lot of time, for example, the SI test of a query
graph in Q32S against a data graph in PPI spends more than
2000 ms.

4) Evaluation on the query time: Figure 7 presents the
query time on the real-world datasets. Because CFQL is the
fastest among vcFV algorithms, we use it as the representative
of vcFV algorithms. CFQL outperforms IFV algorithms, bene-
fiting from the state-of-the-art subgraph matching algorithm in
its verification phase. In the following, we focus on comparing
CFQL with vcGrapes and vcGGSX, which have the same
verification method as CFQL.

As discussed in Section IV-B3, the filtering time of CFQL,
vcGrapes and vcGGSX is longer than the verification time on
AIDS, PDBS and PCM, i.e., the filtering time dominates the

4S 8S 16S 32S 4D 8D 16D 32D
100

101

102

103
Q

u
e
ry

 T
im

e
 (

m
s)

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(a) AIDS (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

10-1

100

101

102

103

104

105

Q
u
e
ry

 T
im

e
 (

m
s)

CT-Index GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(b) PDBS (vary |E(q)|)

4S 8S 16S 32S 4D 8D 16D 32D
100

101

102

103

104

105

Q
u
e
ry

 T
im

e
 (

m
s)

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(c) PCM (vary |E(q)|)
4S 8S 16S 32S 4D 8D 16D 32D

100

101

102

103

104

105

Q
u
e
ry

 T
im

e
 (

m
s)

GGSX Grapes CFL GraphQL CFQL vcGGSX vcGrapes

(d) PPI (vary |E(q)|)
Fig. 7: Query time on the real-world datasets.

TABLE VII: Memory cost on the real-world datasets (MB).
AIDS PDBS PCM PPI

Datasets 28.1 27.5 7.2 4.2
CFQL 0.055 3.627 0.150 2.576

CT-Index 338 317 N/A N/A
GGSX 109 4 1,138 146
Grapes 254 72 3,302 831

query time on the three datasets. Because the filtering time
of CFQL is less than that of vcGrapes and vcGGSX, CFQL
outperforms vcGrapes and vcGGSX on the three datasets. On
PPI, the verification time is much more than the filtering time.
As CFQL, vcGrapes and vcGGSX have a similar filtering
precision, their performance is very close. Overall, CFQL, a
subgraph query algorithm obtained by simply modifying the
subgraph matching algorithm, is competitive with vcGrapes
and vcGGSX, the top-performing IFV algorithms integrated
with the state-of-the-art verification method.

5) Evaluation of the memory cost: Table VII presents the
memory cost on the real-world datasets. For brevity, we only
present the memory cost of CFQL as the representative of
vcFV algorithms. We also omit the memory cost of vcGrapes
and vcGGSX, because they are obtained by integrating Grapes
and GGSX with CFQL respectively whose memory cost is
at most the sum of CFQL and their original versions. The
memory cost of the datasets in the table is the memory
consumed by the data graphs that are stored in the CSR format
(i.e., a label array, an offset array and an edge array). In the
IFV-based algorithms, the memory cost can be exponential
to the graph size (e.g, PCM and PPI). In contrast, CFQL
consumes less than 5MB memory on all data graphs to store
its auxiliary data structure, because the space complexity of
CFQL is O(|V (q)| × |E(G)|).

C. Results on Synthetic Datasets

In this subsection, we run the competing algorithms on the
synthetic datasets to compare their scalability with respect to
several properties of datasets. We use CFQL as the representa-
tive of vcFV algorithms, as it performs the best among vcFV
algorithms. In order to obtain results of Grapes and GGSX
whose verification algorithms are very slow, we conduct the
experiments on the synthetic datasets with Q8S and Q8D. The
efficiency of the SI test depends on the integrated subgraph
matching algorithm. When the competing algorithms adopt the
same subgraph matching method, the key factor affecting the

TABLE VIII: Indexing time on synthetic datasets(seconds).
|Σ| 1 10 20 40 80

CT-Index OOT OOT OOT OOT OOT
GGSX 28 105 194 184 167
Grapes 5 23 76 105 140

d(G) 4 8 16 32 64
CT-Index 9,653 OOT OOT OOT OOT

GGSX 26 216 1,131 4,220 18,541
Grapes 13 79 275 706 2,807

|V (G)| 50 200 800 3200 12800
CT-Index OOT OOT OOT OOT OOT

GGSX 35 198 1,078 1,830 8,630
Grapes 18 74 267 464 OOM

|D| 102 103 104 105 106

CT-Index 62,178 OOT OOT OOT OOT
GGSX 11 174 3,256 OOM OOM
Grapes 7 73 OOM OOM OOM

query performance is the filtering step. Therefore, we mainly
examine the filtering step in terms of the filtering precision
and the filtering time. Additionally, we evaluate the memory
cost of the competing algorithms.

1) Evaluation of index construction: Table VIII presents
the indexing time on the synthetic datasets with |Σ|, d(G),
|V (G)| and |D| varied respectively. If indexing cannot be
completed within the time limit, we mark them as out-of-
time (OOT). Indexing that runs out of memory is marked
as out-of-memory (OOM). Due to the poor time efficiency,
CT-Index fails to build indices on most of the cases. So, we
omit it in the subsequent comparison. Although Grapes and
GGSX run much faster than CT-Index, they consume a large
amount of memory, and fail on some large datasets due to
the OOM error. Both Grapes and GGSX also take a lot of
time on the index construction, for example, when d(G) = 64
or |V (G)| = 12800. Thus, the index construction of the IFV
algorithms severely restricts their scalability.

2) Evaluation of the filtering step: Because the experimen-
tal results on the sparse queries (Q8S) and the dense queries
(Q8D) have the same trends with the properties of the datasets
varied, we only present the experimental results on Q8S .

Evaluation on the filtering precision. The filtering pre-
cision results on the synthetic datasets are shown in Figure
8. Both CFQL and Grapes significantly outperform GGSX.
vcGrapes slightly outperforms CFQL and Grapes, because the
filtering precision of CFQL and Grapes is reasonable, which
is greater than 0.75 on all cases.

1 10 20 40 80
0.0

0.2

0.4

0.6

0.8

1.0
Fi

lt
e
ri

n
g
 P

re
ci

si
o
n

GGSX Grapes CFQL vcGGSX vcGrapes

(a) Vary |Σ|
4 8 16 32 64

0.0

0.2

0.4

0.6

0.8

1.0

Fi
lt

e
ri

n
g
 P

re
ci

si
o
n

GGSX Grapes CFQL vcGGSX vcGrapes

(b) Vary d(G)

50 200 800 3200 12800
0.0

0.2

0.4

0.6

0.8

1.0

Fi
lt

e
ri

n
g
 P

re
ci

si
o
n

GGSX Grapes CFQL vcGGSX vcGrapes

(c) Vary |V (G)|
102 103 104 105 1060.0

0.2

0.4

0.6

0.8

1.0

Fi
lt

e
ri

n
g
 P

re
ci

si
o
n

GGSX Grapes CFQL vcGGSX vcGrapes

(d) Vary |D|
Fig. 8: Filtering precision on the synthetic datasets.

The filtering precision of these algorithms increases with the
increase of |Σ| from 10 to 80, because more distinct labels
result in fewer occurrences of features for IFV algorithms
and fewer candidate data vertices for CFQL. In particular, we
find that the algorithms return all data graphs as candidate
graphs when there is only one label, which is equivalent
to having no label information, because without labels, data
graphs generally contain simple features (e.g., a path whose
length is 4) of the query graph for IFV algorithms, and data
vertices cannot be ruled out by the pruning strategy of CFQL.
In other words, the filtering strategies of these algorithms,
including both IFV and vcFV algorithms, cannot work well
in the unlabeled context. However, the algorithms achieve
high filtering precision in this case, because most data graphs
contain the query graphs.

The growth of d(G) first leads to a decrease of the filtering
precision and followed by an increase. This phenomenon is
because when the data graph is very sparse, it contains fewer
features/candidate data vertices. With the increase of d(G), the
data graph contains more features or more vertices passing the
filtering. When the data graph becomes more dense, it is more
likely to contain the given query, which results in the increase
of the filtering precision.

Evaluation on the filtering time. The filtering time on the
synthetic datasets is presented in Figure 9. The IFV algorithms
conduct the filtering based on their indices, i.e., trie structure
of Grapes and suffix tree structure of GGSX. Therefore, the
filtering time is mainly affected by the depth of the tree, which
is 4 in our experiments. Both Grapes and GGSX take a longer
time with the increase of |V (G)| and |D|, because more data
graphs contain the features in the query graph. The filtering
time of CFQL decreases with the increase of |Σ|, because
most of the invalid candidate data vertices can be ruled out
by the label filter. Because the time complexity of the filtering
method in CFQL is O(|E(q)| × |E(G)|), the filtering time of
CFQL is roughly linear to d(G), |V (G)| and |D|. Therefore,
CFQL has a good scalability and completes the filtering step
on all test cases within 3 seconds.

3) Evaluation of the memory cost: Table IX presents the
memory cost on the synthetic datasets. Because the space
complexity of CFQL is O(|V (q)|× |E(G)|), CFQL consumes
less than 1.5MB memory on all the test cases. In contrast,
both Grapes and GGSX consume a large amount of memory

1 10 20 40 80
10-1

100

101

102

103

Fi
lt

e
ri

n
g
 T

im
e
 (

m
s)

GGSX Grapes CFQL vcGGSX vcGrapes

(a) Vary |Σ|
4 8 16 32 64

10-1

100

101

102

Fi
lt

e
ri

n
g
 T

im
e
 (

m
s)

GGSX Grapes CFQL vcGGSX vcGrapes

(b) Vary d(G)

50 200 800 3200 12800
10-1

100

101

102

103

Fi
lt

e
ri

n
g
 T

im
e
 (

m
s)

GGSX Grapes CFQL vcGGSX vcGrapes

(c) Vary |V (G)|
102 103 104 105 10610-1

100

101

102

103

104

Fi
lt

e
ri

n
g
 T

im
e
 (

m
s)

GGSX Grapes CFQL vcGGSX vcGrapes

(d) Vary |D|
Fig. 9: Filtering time on the synthetic datasets.

TABLE IX: Memory cost on the synthetic datasets (MB).
Vary |Σ| 1 10 20 40 80
Datasets 7.8 7.8 7.8 7.8 7.8
CFQL 0.0320 0.0258 0.0237 0.0214 0.0348
GGSX 0.3242 649 3,650 5,937 10,502
Grapes 0.5586 1,171 6,443 10,267 15,483

Vary d(G) 4 8 16 32 64
Datasets 4.8 7.8 13.7 25.9 50.2
CFQL 0.0222 0.0214 0.0167 0.0160 0.0180
GGSX 779 3,668 8,532 9,842 9,957
Grapes 1,360 6,475 15,181 17,756 18,152

Vary |V (G)| 50 200 800 3200 12800
Datasets 1.9 7.7 35.8 122.1 491.6
CFQL 0.0044 0.0205 0.1679 0.1857 1.0286
GGSX 1,116 3,679 7,723 2,607 2,608
Grapes 1,940 6,492 19,265 19,658 N/A

Vary |D| 102 103 104 105 106

Datasets 0.8 8 77 778 7,787
CFQL 0.0193 0.0227 0.0387 0.0424 0.0437
GGSX 381 3,647 36,317 N/A N/A
Grapes 661 6,437 N/A N/A N/A

to keep their indices.

D. Discussion

Through the experiments, we reveal the impact of the
advancement in subgraph matching on subgraph query pro-
cessing on two aspects

Impact of the performance improvement in subgraph
matching. Because latest subgraph matching algorithms can
significantly accelerate the verification phase, the slow verifi-
cation method in existing IFV algorithms can lead us to over-
estimate the gain of filtering. Take Q8S on PPI as an example
(see Figure 5d): Using VF2 in verification saves around 1000
ms on average by reducing one candidate data graph. However,
using CFQL, we only save 0.2 ms, because the verification of
CFQL is fast. Moreover, with the performance improvement
of the verification, the filtering time can be much longer than
the verification time (e.g., queries on AIDS, PDBS and PCM),
although the subgraph isomorphism problem is NP-complete.
However, improving the filtering precision is still important
especially when the query graph and the data graph become
large. For example, per SI test of Q32S on PPI consumes more
than 2000 ms on average even with CFQL (see Figure 5d).
Therefore, improving the filtering precision is justified only
when the verification phase is the bottleneck of the query.

Impact of the methodology advancement in subgraph
matching. We find that the latest preprocessing-enumeration

subgraph matching algorithms can be easily modified to
subgraph query processing algorithms that also follow the
filtering-verification paradigm. The filtering is based on the
vertex connectivity (i.e., the auxiliary data structure con-
structed dynamically based on the structure of q and G) instead
of the index in IFV algorithms. Our experimental results show
that the filtering precision of vcFV algorithms is competitive
with that of the top-performing IFV algorithms, although the
preprocessing methods are based on heuristics. Moreover, the
filtering process of vcFV algorithms is very fast because of
the good time complexity of the preprocessing method in
state-of-the-art subgraph matching algorithms. Additionally,
the memory consumption of vcFV algorithms is small. As
a result, vcFV algorithms can scale up subgraph queries to
hundreds of thousands of data graphs and graphs of tens of
thousands of vertices, without the index in IFV algorithms.

V. CONCLUSIONS

In this paper, we study eight subgraph query processing al-
gorithms in three categories: (1) the traditional IFV algorithms;
(2) our vcFV algorithms taking the preprocessing-enumeration
subgraph matching paradigm for subgraph query processing;
and (3) the integration of the first two categories of algo-
rithms. Our results show that working without an index, vcFV
algorithms eliminate the problems of index scalability and
index update cost, and outperform the IFV algorithms on both
query time and scalability. Also, vcFV algorithms can work
on the graphs that are frequently updated. Our source code
is publicly available at https://github.com/RapidsAtHKUST/
SubgraphContainment.

VI. ACKNOWLEDGMENTS

This work was partly supported by grants 16206414 from
the Hong Kong Research Grants Council and MRA11EG01
from Microsoft.

REFERENCES

[1] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph
matching by postponing cartesian products. In SIGMOD, 2016.

[2] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and D. Shasha. En-
hancing graph database indexing by suffix tree structure. In Pattern
Recognition in Bioinformatics, 2010.

[3] J. Cheng, Y. Ke, and W. Ng. Efficient query processing on graph
databases. In TODS, 2009.

[4] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free
query processing on graph databases. In SIGMOD, 2007.

[5] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
1971.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2004.

[7] R. Di Natale, A. Ferro, R. Giugno, M. Mongiovı̀, A. Pulvirenti, and
D. Shasha. Sing: Subgraph search in non-homogeneous graphs. In
BMC bioinformatics, 2010.

[8] I. S. Duff, K. Kaya, and B. Uçcar. Design, implementation, and analysis
of maximum transversal algorithms. In TOMS, 2011.

[9] Z. Fan, B. Choi, J. Xu, and S. S. Bhowmick. Asymmetric structure-
preserving subgraph queries for large graphs. In ICDE, 2015.

[10] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and
D. Shasha. Grapes: A software for parallel searching on biological
graphs targeting multi-core architectures. In PloS one, 2013.

[11] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and robust
subgraph isomorphism search in large graph databases. In SIGMOD,
2013.

[12] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. igraph: a framework for
comparisons of disk-based graph indexing techniques. In PVLDB, 2010.

[13] H. He and A. K. Singh. Closure-tree: An index structure for graph
queries. In ICDE, 2006.

[14] H. He and A. K. Singh. Graphs-at-a-time: query language and access
methods for graph databases. In SIGMOD, 2008.

[15] F. Katsarou, N. Ntarmos, and P. Triantafillou. Performance and scala-
bility of indexed subgraph query processing methods. In PVLDB, 2015.

[16] F. Katsarou, N. Ntarmos, and P. Triantafillou. Hybrid algorithms for
subgraph pattern queries in graph databases. In IEEE International
Conference on Big Data, 2017.

[17] F. Katsarou, N. Ntarmos, and P. Triantafillou. Subgraph querying with
parallel use of query rewritings and alternative algorithms. In EDBT,
2017.

[18] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H.
Jarrah. Dualsim: Parallel subgraph enumeration in a massive graph on
a single machine. In SIGMOD, 2016.

[19] R. Kimmig, H. Meyerhenke, and D. Strash. Shared memory parallel
subgraph enumeration. In IPDPSW, 2017.

[20] K. Klein, N. Kriege, and P. Mutzel. Ct-index: Fingerprint-based graph
indexing combining cycles and trees. In ICDE, 2011.

[21] L. Lai, L. Qin, X. Lin, and L. Chang. Scalable subgraph enumeration
in mapreduce. In PVLDB, 2015.

[22] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang. Scalable
distributed subgraph enumeration. In PVLDB, 2017.

[23] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth
comparison of subgraph isomorphism algorithms in graph databases.
In PVLDB, 2012.

[24] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Capturing
topology in graph pattern matching. In TODS, 2014.

[25] M. Qiao, H. Zhang, and H. Cheng. Subgraph matching: on compression
and computation. In PVLDB, 2017.

[26] X. Ren and J. Wang. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. In PVLDB, 2015.

[27] X. Ren and J. Wang. Multi-query optimization for subgraph isomor-
phism search. In PVLDB, 2016.

[28] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism. In PVLDB,
2008.

[29] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu. Parallel subgraph
listing in a large-scale graph. In SIGMOD, 2014.

[30] D. Shasha, J. T. Wang, and R. Giugno. Algorithmics and applications
of tree and graph searching. In ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 2002.

[31] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph
matching on billion node graphs. In PVLDB, 2012.

[32] J. R. Ullmann. An algorithm for subgraph isomorphism. In JACM,
1976.

[33] J. Wang, N. Ntarmos, and P. Triantafillou. Indexing query graphs to
speed up graph query processing. In EDBT, 2016.

[34] J. Wang, N. Ntarmos, and P. Triantafillou. Graphcache: a caching system
for graph queries. In EDBT, 2017.

[35] D. W. Williams, J. Huan, and W. Wang. Graph database indexing using
structured graph decomposition. In ICDE, 2007.

[36] Y. Xie and P. S. Yu. Cp-index: on the efficient indexing of large graphs.
In CIKM, 2011.

[37] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based
approach. In SIGMOD, 2004.

[38] D. Yuan and P. Mitra. Lindex: a lattice-based index for graph databases.
In VLDBJ, 2013.

[39] D. Yuan, P. Mitra, H. Yu, and C. L. Giles. Updating graph indices with
a one-pass algorithm. In SIGMOD, 2015.

[40] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing method.
In ICDE, 2007.

[41] P. Zhao and J. Han. On graph query optimization in large networks. In
PVLDB, 2010.

[42] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree+ delta¡= graph.
In PVLDB, 2007.

[43] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral coding in a large
graph database. In EDBT, 2008.

