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Subgraph Isomorphism

Given graphs g = (V,E,L)and g' = (V',E',L"), a
from g to g’ is an injective function @:V —» V"’

that satisfies:
(1) Vu e V,L(u) = L'(p(w));
(2) Ve(u,u") € E,e(p(u),p(u’)) € E'.



Example of Subgraph Isomorphism

Qo = {(uo; Uo); (u1; V1), (uz; V,), (UB; Vg)}
A Subgraph Isomorphism fromg to g'.



Problem Definition

Given a graph database D = {G4, G,, ..., G,,} and a query graph g,
a finds all data graphs in D that contain q.

Applications:
® Computer-aided design;
® Protein interaction relationship retrieval.



A Naive Solution

Loop over each data graph G in graph database D to test
whether G contains the query graph q.



A Naive Solution

Loop over each data graph G in graph database D to test
whether G contains the query graph q.

@ The subgraph isomorphism problem is NP-complete.
@ Perform |D| subgraph isomorphism tests.



IFV Procedure

Researchers proposed the

procedure.

© Reduce the number of subgraph isomorphism tests.

Algorithm Feature Feature Index Storage
Extraction Structure
GraphGrep [30] Enumeration Path Memory
GraphGrepSX [2] Enumeration Path Memory
Grapes [10] Enumeration Path Memory
SING [7] Enumeration Path Memory
CT-Index [20] Enumeration Tree/Cycle Memory
GDIndex [35] Enumeration Graph Memory
GCode [43] Enumeration Graph Memory
SwiftIndex [28] Mining Tree Memory
TreePi [40] Mining Tree Memory
Tree+Delta [42] Mining Tree/Graph Memory
CP-Index [36] Mining Graph Memory
gIndex [37] Mining Graph Memory
FG-Index [4] Mining Graph Memory/Disk
FG*-Index [3] Mining Graph Memory/Disk
Lindex+ [38] Mining Graph Memory/Disk




Indexing

Build an index on data graphs.
® Keys are features.
® \/alues are data graphs.



Example of Indexing

e i | Feature | Data Graph ID

(Al B) Gll G3; G4.

Build I by exhaustively (A, €) G162 G3,Gy

®
© Q) 99 ®) ® | enumerating all paths the (B, C) G1,G5,G3
® 9‘9 Q‘G @.@ length of which is 1. (B, D) G,,Gs,G,

6, 6. 6 I |, G EE,

Graph Database D. Index 1.




Index-Based Filtering

Filter data graphs based on the index.
1. Decompose g into a collection F(q) of features.

2. Generate a set C(q) of candidate data graphs, each of which
contains F(q).



Example of Index-Based Filtering

Data Graph ID

S — | (A, B) G1,G3.G,
i fi i (A, C) G1,G5, G3,Gy
0o Decompose | f; Lookup (B, C) G1,G2,G3 Intersect
9‘0 — £ ‘ (B, D) G BanC C(q) = {G{,G3}
(C, D) Gy GG
Query Graph gq. Feature Set F(q). Index I. Candidate Set.
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Example of Index-Based Filtering

® .
- ®© @ ------------------
GSQ a.a f1
® ©® 00— ‘ © ® f |
S 64 6 G ¥
Graph Database D. Query Graph q. Feature Set F(q).
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Verification

Verify whether each candidate graph contains the query graph.

® Consider the candidate set C(q) instead of the entire graph
database D.



Drawbacks of IFV

® Fail to build indices on large graph databases.

F. Katsarou, N. Ntarmos, and P. Triantafillou. Performance and scalability of indexed
subgraph query processing methods. In PVLDB, 2015.




Drawbacks of IFV

® Fail to build indices on large graph databases.
@ Unsuitable for graphs that change frequently.



Drawbacks of IFV

® Fail to build indices on large graph databases.
@ Unsuitable for graphs that change frequently.
@ Slow verification algorithms.



Subgraph Matching

Given a data graph G and a query graph g,
finds all subgraph isomorphisms from g to G.



Opportunities from Subgraph Matching

© The latest subgraph matching algorithms can speed up the
verification step in subgraph queries.

© The preprocessing-enumeration methodology of latest subgraph
matching algorithms can also be applied for subgraph queries.



Preprocessing of Subgraph Matching

Given g and G, a ofueV(q)is
If &(u) satisfies: if the mapping (u, v) exists in a
subgraph isomorphism from g to G where v € V(G), then v € ®(u).



Preprocessing of Subgraph Matching

Given g and G, a ofueV(q)is
If &(u) satisfies: if the mapping (u, v) exists in a
subgraph isomorphism from g to G where v € V(G), then v € ®(u).

aims to minimize ®(u) without breaking its
completeness.

F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph matching by postponing
cartesian products. In SIGMOD, 2016.




Observation

Given g and G, Yu € V(q), ®(u) is complete. If 3u € V(q), P(u) = 0,
then G does not contain q.



vcFV Procedure

We design the vertex-connectivity based filtering-verification (vcFV)
procedure.

® |dentify candidate graphs based on candidate vertex sets.



vcFV Procedure

Input: a query graph g and a graph database D
Output: an answer set A (q) keeping all data graphs in D that contain g
begin
A(q) < 0;
foreach G € D do
$ <« Filter(q, GG);
if Vu € V(q), ®(u) # () then

if Vverify (q, GG, ®) is true then

| A(g) « A(q) U{G}:

return A(q);

R~ SN Rl W -

Algo 1. The vcFV Procedure.



vcFV Procedure

Input: a query graph g and a graph database D
Output: an answer set A (q) keeping all data graphs in D that contain g
begin
A(q) < 0;
foreach G € D do
$ <« Filter(q, GG);
if Vu € V(q), P(u) # () then

if Vverify (q, GG, ®) is true then

| A(g) « A(q) U{G}:

return A(q);

R~ SN Rl W -

Algo 1. The vcFV Procedure.



vcFV Procedure

Input: a query graph g and a graph database D

Output: an answer set .A(q) keeping all data graphs in D that contain q

begin

A(q) < 0;

foreach G € D do ' (1) Use the preprocessing phase of latest subgraph

O < Filter(q, G); L— | matching algorithms as the filtering function. |
if Vu € V(q), (u) # (0 then
if Verify (¢, G, ®) is true|then ' (2) Modify the enumeration phase of

| A(q) < A(q) U{G}; —  latest subgraph matching algorithms
return A(q); . as the verification function. '

__________________________________________________

R~ SN Rl W -

Algo 1. The vcFV Procedure.
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Competing Algorithms

Category | Algorithm | Indexing Filtering Verification
CT-Index Hashset Index VE2
IFV Grapes Trie Index VE2
GGSX Suffix tree | Index VE2
CFL N/A Preprocesing of CFL Enumeration
veFV of CFL
GraphQL N/A Preprocesing of GraphQL Enumeration
of GraphQL
CFQL N/A Preprocesing of CFL Enumeration
of GraphQL
IveFV vcGrapes Trie Index anq ‘ E{lumeration
preprocesing of CFL of GraphQL
veGGSX Suffix tree | Index and Enumeration
preprocesing of CFL of GraphQL

A summary of competing algorithms.

® CT-Index, GGSX and Grapes are the
top-performing IFV algorithms in the
previous performance study.

® CFL and GraphQL are the leading
subgraph matching algorithms.

® |vcFV algorithms are obtained by
integrating IFV algorithms with vcFV
algorithms.



Experimental Setup

Real-world Datasets:

AIDS PDBS PCM PPI
#graphs 40,000 600 200 20
#labels 62 10 21 46
#vertices per graph 45 2,939 377 4,942
#edges per graph 46.95 3.064 4,340 26,667
degree per graph 2.09 2.06 23.01 10.87
#labels per graph 44 6.4 18.9 28.5

Synthetic Datasets:

Set |X]| = 20, |d(G)| =8, |[V(G)| =200 and |D| = 1000 as default.
® \Vary |Z| from 1, 10, 20, 40 to 80.

® \Vary d(G) from4, 8, 16, 32 to 64.

® Vary |V(G)| from 50, 200, 800, 3200 to 12800.

® \ary |D| from 102, 103, 10*, 10° to 10°.




Filtering Precision

® Filtering Precision = — Z A \where A(q) is the answer set and C(q) is the candidate set.

Q| ~a€C |c< )|
® The filtering precisionof vcFV algorithms is competitive with that of IFV algorithms.
® The filtering precisionon dense query sets (d(g) = 3) is higher than that on sparse query sets.
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Query Time

® Query time is the time spent on processing a guery, consisting of both filtering and verification time.

® Benefiting from efficient subgraph matching, vcFV and IvcFV algorithms significantly outperform IFV
algorithms.

® CFQL algorithm is competitive with vcGrapes and veGGSX, the top-performing IFV algorithms
integrated with the state-of-the-art subgraph matching algorithms.

105 X3 GGSX [ Grapes E=m CFL ESN GraphQL EEEE CFQL vcGGSX vcGrapes

50 i

& I____\ : vCcFV |

v 103} ] _7"

=2 N < | 2

= |

. 10 | IVeFV |

o T Iwi ad Dok
10° E_‘ ’—% gﬂ %Tl | R E_‘ Fﬁ Fﬂ l_% E_J r%

45 85 165 325 4D 8D 16D 32D
Query time on PCM with |E(q)| varying.



Scalability

€ GGSX /A Grapes < CFQL (-2 veGGSX —+—+ vcGrapes (<> GGSX /A7 Grapes < CFQL (G- vcGGSX —+—+ vcGrapes

Filtering Time (ms)
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(a) Vary |2 (b) Vary d(G)

€5 GGSX A Grapes ¥ CFQL (3 vcGGSX +— vcGrapes <(3<> GGSX /A Grapes << CFQL (9 vcGGSX -+—F vcGrapes

Filtering Time (ms)
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Filtering Time (ms)

50 200 800 3200 12800
(¢) Vary |[V(G) (d) Vary |D|

Filtering time on synthetic datasets with Qg;.

® As the time complexity of the
filtering method of CFQL is
O(|E(q)| X |E(G)]), the filtering
time of CFQL is roughly linear to
d(G), |V(G)| and |D].

® CFQL has a good scalability and
completes the filtering on all test
cases within 3 seconds.
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Conclusions

® The slow verification in existing IFV algorithms can lead us
over-estimate the gain of filtering.

® vcFV algorithms are competitive in both filtering precision and
time performance with that of top-performing IFV algorithms.

® vcFV algorithms can scale to hundreds of thousands of data
graphs and graphs of thousands of vertices without any indices.



Use vcFV algorithms instead of
IFV algorithms!



[=] ! [=] Download our source
q__ code and datasets from
H github by command:




Thanks. Q&A

[=] ! [=] Download our source
q__ code and datasets from
O Eﬁ github by command:




Why Separate the Process into Two Steps?



Why Separate the Process into Two Steps?

© Examine the bottleneck of subgraph qguery processing.



Why Separate the Process into Two Steps?

© Examine the bottleneck of subgraph query processing.
© Combine different filtering and verification functions.



Filtering Time

® Filtering time is the time spent on the filtering step.
® There is no single winner on all cases.
® The absolute value of the filtering time is very small.
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Per S| Test Time

® Per SI Test Time ——Z

10| “9€Q |c(q)

Ty(D,q)

where T,,(D, q) is the time spent on the verification step.

® Efficientsubgraph matching leads to the significant performance improvement of the verification.

® The slow verification in IFV algorithms can lead us to over-estimate the gain of filtering.

® Although the Sl test is NP-complete, the filtering time can dominate the query time.

103 KXXH GGSX 1 Grapes CFL ES=] GraphQL B CFQL vcGGSX vcGrapes
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Per Sl test time on PCM with |E(q)| varying.




Experimental Setup

Algorithm Configuration:

® Grapes, vcGrapes: Use 6 threads and enumerate paths of up to a length of 4.
® GGSX, veGGSX: Enumerate paths of up to a length of 4.
® CT-Index: Enumerate trees and cycles of up to a length of 4.

Experiment Environment:

® The binary of CT-Index is implemented by JAVA, while the other algorithms are
Implemented in C++.

® Perform all experiments on a 64-bit Linux machine equipped with two Intel Xeon E5-2650
V3 processors and 64GB RAM.



Experimental Setup

Query Sets:

® Given a dataset, we generate 8 query sets including 4 dense query sets and 4 sparse
guery sets.

® Each query set contains 100 query graphs with the same number of edges.

® The number of edges varies from4, 8, 16 to 32. We use Q;p, and Q;s to denote dense
guery sets and sparse query sets with i edges respectively.



Scalability

|——————— | =TT e |
| Grapes | CFQL 1 VeGrapes |
B GGSX ﬁ%%ﬁe}% CFQL € e vcGrapes E¥S GGSX [XXI Grapes [l CFQL FZA veGGSX vcGrapes ) . )
1Oy ;_\5 ¥ A _ 10y R ZE N ® CFQL is competitive with the
2 0.8 B NZIRNDZOTE. Nk SosigyV N NU| BN BT top-performing IFV and IvcFV
So.6ph: A1 N B fosgl NU NM| B &7 algorithms on all cases.
2 0.4 BN g N 0.4 BN Pl U LT ol . . .. .
5 00l B i § Sool 0 B Bl B B @ The filtering precisionof CFQL is
= IR A B B B £ IR B B B B reasonable, which is greater
R 10 20 40 80 w0 8 16 32 64 than 0.75 on all cases.
(a) Vary | (b) Vary d(G)
B GGSX [EX1 Grapes CFQL 772 veGGSX vcGrapes GGSX XX Grapes CFQL 77 vcGGSX vcGrapes
1.0 — . ‘ . == 1.0——— ——
c No# ezl ] LT ; S o N - "
sosl Y N A Nk , 2 0.8[ N7, 7. ]
8oe @ ' {0\ , BoslBY NA | §
0.4 B\, Y i 204 4. . ’
go,z- ¥ b o " EO.Z— ° E N % o d
00550 260 800 3200 12800 0.0 10° 10° 10°
(¢) Vary |V(G) (d) Vary |D|

Filtering precisionon synthetic datasets with Qggs.
42



Backup

AIDS PDBS
Qus | Qss | Qies | @325 | Qup | Usp | Qiep | Q32D Qas | Qss | Qies | Q325 | Qup | Qsp | Qiep | Q32D
\V| per g 5.00 8.92 16.29 31.30 4.99 6.00 9.66 18.16 4.95 8.80 16.41 32.13 4.93 5.99 9.45 18.90
|22 per ¢ 2.41 2.88 3.58 4.15 2.37 2.11 1.99 2.76 243 2.96 3.45 3.73 2.45 2.00 2.56 3.23
d per g 1.60 1.80 1.97 2.05 1.60 2.67 3.32 3.62 1.62 1.83 1.96 2.00 1.63 2.67 3.41 3.44
% of trees 1.00 0.92 0.38 0.14 0.99 0.00 0.00 0.00 0.95 0.85 0.72 0.58 0.93 0.00 0.00 0.00
PCM PPI1
Qs | Qss | Qies | Q325 | Qup | Qsp | Qieép | Q32D Qs | Qss | Qies | Qa2s | Qup | Qsp | Qiep | Q32D
V| per ¢ 4.96 8.48 15.49 20.47 4.00 5.20 7.20 10.11 4.98 8.75 16.13 30.86 4.51 5.60 9.02 16.44
|22 per ¢ 4.34 6.64 10.18 14.06 3.65 443 5.82 7.77 3.28 4.71 6.63 8.43 3.2 3.86 4.85 6.57
d per q 1.62 1.92 2.09 2.19 2.00 3.09 4.46 6.39 1.61 1.83 1.99 2.09 1.80 2.88 3.59 4.06
% of trees 0.96 0.66 0.22 0.04 0.00 0.00 0.00 0.00 0.98 0.77 0.50 0.22 0.51 0.00 0.00 0.00

Statistics of query sets on the real-world datasets.




Backup

AIDS PDBS PCM PPI
CT-Index 225 1,714 OooT OO0T
GGSX 8 5 433 2,209
Grapes 6 1 66 223

Indexing time on real-world datasets (seconds).

AIDS PDBS PCM PPI
Datasets 28.1 27.5 7.2 4.2
CFQL 0.055 3.627 0.150 2.576
CT-Index 338 317 N/A N/A
GGSX 109 4 1,138 146
Grapes 254 72 3,302 831

Memory cost on real-world datasets (MB).




Experiment Results on Indexing

> | 10 20 40 80 .
P —— —— = — — ® Default Settings: |X| = 20, |d(G)| = 8,
=-1naex
GGSX || 28 105 104 184 167 [V(G)| =200and |D| =1000.
Grapes 5 23 76 103 140 ® OOT: out-of-time (24 Hours).
d(G) 4 3 16 32 64 ® OOM: out-of-memory (64GB).
CT-Index || 9.653 OOT OOT OOT OOT
GGSX 26 216 1,131 4,220 18,541
Grapes 13 79 275 706 2,807
V(G| 50 200 800 3200 12800
CT-Index || OOT OOT OOT OOT OOT
GGSX 35 198 1,078 1,830 8,630
Grapes 18 74 267 464 OOM
| D] 10° 10° 10° 10° 10°
CT-Index || 62,178 OOT OOT OOT OOT
GGSX 11 174 3.256 OOM OOM
Grapes 7 73 OOM OOM OOM

Table 1. The indexing time on synthetic datasets (seconds).



Backup

Vary | X 1 10 20 40 80
Datasets 7.8 7.8 7.8 7.8 7.8
CFQL 0.0320 0.0258 0.0237 0.0214 0.0348
GGSX 0.3242 649 3,650 5,937 10,502
Grapes 0.5586 1,171 6,443 10,267 15,483
Vary d(G) 4 8 16 32 64
Datasets 4.8 7.8 13.7 25.9 50.2
CFQL 0.0222 0.0214 0.0167 0.0160 0.0180
GGSX 779 3,668 8,532 9,842 9,957
Grapes 1,360 6,475 15,181 17,756 18,152
Vary |V (G)| 50 200 800 3200 12800
Datasets 1.9 7.7 35.8 122.1 491.6
CFQL 0.0044 0.0205 0.1679 0.1857 1.0286
GGSX 1,116 3,679 7,723 2,607 2,608
Grapes 1,940 6,492 19,265 19,658 N/A
Vary | D] 102 103 107 10° 10°
Datasets 0.8 8 77 778 7,787
CFQL 0.0193 0.0227 0.0387 0.0424 0.0437
GGSX 381 3,647 36,317 N/A N/A
Grapes 661 6,437 N/A N/A N/A

Memory cost on synthetic datasets (MB).
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