

Scaling Up Subgraph Query Processing with Efficient Subgraph Matching

Shixuan Sun and Qiong Luo*

The Hong Kong University of Science and Technology

Subgraph Isomorphism

Given graphs g = (V, E, L) and g' = (V', E', L'), a subgraph isomorphism from g to g' is an injective function $\varphi: V \to V'$ that satisfies:

(1) $\forall u \in V, L(u) = L'(\varphi(u));$ (2) $\forall e(u, u') \in E, e(\varphi(u), \varphi(u')) \in E'.$

Example of Subgraph Isomorphism

$$\varphi_0 = \{(u_0, v_0), (u_1, v_1), (u_2, v_2), (u_3, v_3)\}$$

A Subgraph Isomorphism from *g* to *g'*.

Problem Definition

Given a graph database $D = \{G_1, G_2, ..., G_n\}$ and a query graph q, a subgraph query finds all data graphs in D that contain q.

Applications:

- Computer-aided design;
- Protein interaction relationship retrieval.

A Naïve Solution

Loop over each data graph G in graph database D to test whether G contains the query graph q.

A Naïve Solution

Loop over each data graph G in graph database D to test whether G contains the query graph q.

- ☺ The subgraph isomorphism problem is NP-complete.
- \odot Perform |D| subgraph isomorphism tests.

IFV Procedure

Researchers proposed the indexing-filtering-verification (IFV) procedure.

☺ Reduce the number of subgraph isomorphism tests.

Algorithm	Feature	Feature	Index Storage
	Extraction	Structure	
GraphGrep [30]	Enumeration	Path	Memory
GraphGrepSX [2]	Enumeration	Path	Memory
Grapes [10]	Enumeration	Path	Memory
SING [7]	Enumeration	Path	Memory
CT-Index [20]	Enumeration	Tree/Cycle	Memory
GDIndex [35]	Enumeration	Graph	Memory
GCode [43]	Enumeration	Graph	Memory
SwiftIndex [28]	Mining	Tree	Memory
TreePi [40]	Mining	Tree	Memory
Tree+Delta [42]	Mining	Tree/Graph	Memory
CP-Index [36]	Mining	Graph	Memory
gIndex [37]	Mining	Graph	Memory
FG-Index [4]	Mining	Graph	Memory/Disk
FG*-Index [3]	Mining	Graph	Memory/Disk
Lindex+ [38]	Mining	Graph	Memory/Disk

Indexing

Build an index on data graphs.

- Keys are features.
- Values are data graphs.

Example of Indexing

Index-Based Filtering

Filter data graphs based on the index.

- 1. Decompose q into a collection F(q) of features.
- 2. Generate a set C(q) of candidate data graphs, each of which contains F(q).

Example of Index-Based Filtering

Example of Index-Based Filtering

Graph Database D.

Query Graph q.

Feature Set F(q).

Verification

Verify whether each candidate graph contains the query graph.

• Consider the candidate set C(q) instead of the entire graph database D.

Drawbacks of IFV

☺ Fail to build indices on large graph databases.

F. Katsarou, N. Ntarmos, and P. Triantafillou. Performance and scalability of indexed subgraph query processing methods. In PVLDB, 2015.

Drawbacks of IFV

Fail to build indices on large graph databases.
Unsuitable for graphs that change frequently.

Drawbacks of IFV

☺ Fail to build indices on large graph databases.

- ☺ Unsuitable for graphs that change frequently.
- \odot Slow verification algorithms.

Subgraph Matching

Given a data graph G and a query graph q, subgraph matching finds all subgraph isomorphisms from q to G.

Opportunities from Subgraph Matching

- ☺ The latest subgraph matching algorithms can speed up the verification step in subgraph queries.
- ☺ The preprocessing-enumeration methodology of latest subgraph matching algorithms can also be applied for subgraph queries.

Preprocessing of Subgraph Matching

Given q and G, a candidate vertex set $\Phi(u)$ of $u \in V(q)$ is complete if $\Phi(u)$ satisfies: if the mapping (u, v) exists in a subgraph isomorphism from q to G where $v \in V(G)$, then $v \in \Phi(u)$.

Preprocessing of Subgraph Matching

Given q and G, a candidate vertex set $\Phi(u)$ of $u \in V(q)$ is complete if $\Phi(u)$ satisfies: if the mapping (u, v) exists in a subgraph isomorphism from q to G where $v \in V(G)$, then $v \in \Phi(u)$.

Preprocessing aims to minimize $\Phi(u)$ without breaking its completeness.

F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph matching by postponing cartesian products. In SIGMOD, 2016.

Observation

Given q and G, $\forall u \in V(q), \Phi(u)$ is complete. If $\exists u \in V(q), \Phi(u) = \emptyset$, then G does not contain q.

We design the vertex-connectivity based filtering-verification (vcFV) procedure.

• Identify candidate graphs based on candidate vertex sets.

Input: a query graph q and a graph database \mathcal{D} **Output**: an answer set $\mathcal{A}(q)$ keeping all data graphs in \mathcal{D} that contain q

1 begin

2	$\mathcal{A}(q) \leftarrow \emptyset;$
3	foreach $G \in \mathcal{D}$ do
4	$\Phi \leftarrow \texttt{Filter}(q, G);$
5	if $\forall u \in V(q), \Phi(u) \neq \emptyset$ then
6	if Verify (q, G, Φ) is true then
7	$\mathcal{A}(q) \leftarrow \mathcal{A}(q) \cup \{G\};$
8	return $\mathcal{A}(q)$;

Algo 1. The vcFV Procedure.

Input: a query graph q and a graph database \mathcal{D} **Output**: an answer set $\mathcal{A}(q)$ keeping all data graphs in \mathcal{D} that contain q

1 begin

Algo 1. The vcFV Procedure.

Input: a query graph q and a graph database \mathcal{D} **Output**: an answer set $\mathcal{A}(q)$ keeping all data graphs in \mathcal{D} that contain q

1 begin

Algo 1. The vcFV Procedure.

Competing Algorithms

Category	Algorithm	Indexing	Filtering	Verification
	CT-Index	Hashset	Index	VF2
IFV	Grapes	Trie	Index	VF2
	GGSX	Suffix tree	Index	VF2
	CFL	N/A	Preprocesing of CFL	Enumeration
vcFV				of CFL
	GraphQL	N/A	Preprocesing of GraphQL	Enumeration
				of GraphQL
	CFQL	N/A	Preprocesing of CFL	Enumeration
				of GraphQL
IveEV	vcGrapes	Trie	Index and	Enumeration
			preprocesing of CFL	of GraphQL
	vcGGSX	Suffix tree	Index and	Enumeration
			preprocesing of CFL	of GraphQL

A summary of competing algorithms.

- CT-Index, GGSX and Grapes are the top-performing IFV algorithms in the previous performance study.
- CFL and GraphQL are the leading subgraph matching algorithms.
- IvcFV algorithms are obtained by integrating IFV algorithms with vcFV algorithms.

Experimental Setup

Real-world Datasets:

	AIDS	PDBS	PCM	PPI
#graphs	40,000	600	200	20
#labels	62	10	21	46
#vertices per graph	45	2,939	377	4,942
#edges per graph	46.95	3,064	4,340	26,667
degree per graph	2.09	2.06	23.01	10.87
#labels per graph	4.4	6.4	18.9	28.5

Synthetic Datasets:

Set $|\Sigma| = 20$, |d(G)| = 8, |V(G)| = 200 and |D| = 1000 as default.

- Vary |Σ| from 1, 10, 20, 40 to 80.
- Vary *d*(*G*) from 4, 8, 16, 32 to 64.
- Vary |*V*(*G*)| from 50, 200, 800, 3200 to 12800.
- Vary |D| from 10^2 , 10^3 , 10^4 , 10^5 to 10^6 .

Filtering Precision

• *Filtering Precision* = $\frac{1}{|Q|} \sum_{q \in Q} \frac{|A(q)|}{|C(q)|}$ where A(q) is the answer set and C(q) is the candidate set.

- The filtering precision of vcFV algorithms is competitive with that of IFV algorithms.
- The filtering precision on dense query sets $(d(q) \ge 3)$ is higher than that on sparse query sets.

Query Time

- Query time is the time spent on processing a query, consisting of both filtering and verification time.
- Benefiting from efficient subgraph matching, vcFV and IvcFV algorithms significantly outperform IFV algorithms.
- CFQL algorithm is competitive with vcGrapes and vcGGSX, the top-performing IFV algorithms integrated with the state-of-the-art subgraph matching algorithms.

Scalability

• As the time complexity of the filtering method of CFQL is $O(|E(q)| \times |E(G)|)$, the filtering time of CFQL is roughly linear to d(G), |V(G)| and |D|.

• CFQL has a good scalability and completes the filtering on all test cases within 3 seconds.

Filtering time on synthetic datasets with Q_{8S} .

Conclusions

- The slow verification in existing IFV algorithms can lead us over-estimate the gain of filtering.
- vcFV algorithms are competitive in both filtering precision and time performance with that of top-performing IFV algorithms.
- vcFV algorithms can scale to hundreds of thousands of data graphs and graphs of thousands of vertices without any indices.

Use vcFV algorithms instead of IFV algorithms!

Download our source code and datasets from github by command: git clone https://github.com/RapidsAtHKU ST/SubgraphContainment.git

Thanks. Q&A

0.0
JIC

Download our source code and datasets from github by command: git clone https://github.com/RapidsAtHKU ST/SubgraphContainment.git

Why Separate the Process into Two Steps?

Why Separate the Process into Two Steps?

☺ Examine the bottleneck of subgraph query processing.

Why Separate the Process into Two Steps?

Examine the bottleneck of subgraph query processing.
Combine different filtering and verification functions.

Filtering Time

- Filtering time is the time spent on the filtering step.
- There is no single winner on all cases.
- The absolute value of the filtering time is very small.

Per SI Test Time

- Per SI Test Time = $\frac{1}{|Q|} \sum_{q \in Q} \frac{T_V(D,q)}{|C(q)|}$ where $T_v(D,q)$ is the time spent on the verification step.
- Efficient subgraph matching leads to the significant performance improvement of the verification.
- The slow verification in IFV algorithms can lead us to over-estimate the gain of filtering.
- Although the SI test is NP-complete, the filtering time can dominate the query time.

Experimental Setup

Algorithm Configuration:

- Grapes, vcGrapes: Use 6 threads and enumerate paths of up to a length of 4.
- GGSX, vcGGSX: Enumerate paths of up to a length of 4.
- CT-Index: Enumerate trees and cycles of up to a length of 4.

Experiment Environment:

- The binary of CT-Index is implemented by JAVA, while the other algorithms are implemented in C++.
- Perform all experiments on a 64-bit Linux machine equipped with two Intel Xeon E5-2650 V3 processors and 64GB RAM.

Experimental Setup

Query Sets:

- Given a dataset, we generate 8 query sets including 4 dense query sets and 4 sparse query sets.
- Each query set contains 100 query graphs with the same number of edges.
- The number of edges varies from 4, 8, 16 to 32. We use Q_{iD} and Q_{iS} to denote dense query sets and sparse query sets with *i* edges respectively.

Filtering precision on synthetic datasets with Q_{8S} .

- CFQL is competitive with the top-performing IFV and IvcFV algorithms on all cases.
- The filtering precision of CFQL is reasonable, which is greater than 0.75 on all cases.

Backup

	AIDS						PDBS									
	Q_{4S}	Q_{8S}	Q_{16S}	Q_{32S}	Q_{4D}	Q_{8D}	Q_{16D}	Q_{32D}	Q_{4S}	Q_{8S}	Q_{16S}	Q_{32S}	Q_{4D}	Q_{8D}	Q_{16D}	Q_{32D}
V per q	5.00	8.92	16.29	31.30	4.99	6.00	9.66	18.16	4.95	8.80	16.41	32.13	4.93	5.99	9.45	18.90
$ \Sigma $ per q	2.41	2.88	3.58	4.15	2.37	2.11	1.99	2.76	2.43	2.96	3.45	3.73	2.45	2.00	2.56	3.23
d per q	1.60	1.80	1.97	2.05	1.60	2.67	3.32	3.62	1.62	1.83	1.96	2.00	1.63	2.67	3.41	3.44
% of trees	1.00	0.92	0.38	0.14	0.99	0.00	0.00	0.00	0.95	0.85	0.72	0.58	0.93	0.00	0.00	0.00
				Р	СМ				PPI							
	Q_{4S}	Q_{8S}	Q_{16S}	Q_{32S}	Q_{4D}	Q_{8D}	Q_{16D}	Q_{32D}	Q_{4S}	Q_{8S}	Q_{16S}	Q_{32S}	Q_{4D}	Q_{8D}	Q_{16D}	Q_{32D}
V per q	4.96	8.48	15.49	29.47	4.00	5.20	7.20	10.11	4.98	8.75	16.13	30.86	4.51	5.60	9.02	16.44
$ \Sigma $ per q	4.34	6.64	10.18	14.06	3.65	4.43	5.82	7.77	3.28	4.71	6.63	8.43	3.20	3.86	4.85	6.57
d per q	1.62	1.92	2.09	2.19	2.00	3.09	4.46	6.39	1.61	1.83	1.99	2.09	1.80	2.88	3.59	4.06
% of trees	0.96	0.66	0.22	0.04	0.00	0.00	0.00	0.00	0.98	0.77	0.50	0.22	0.51	0.00	0.00	0.00

Statistics of query sets on the real-world datasets.

Backup

	AIDS	PDBS	РСМ	PPI
CT-Index	225	1,714	OOT	OOT
GGSX	8	5	433	2,209
Grapes	6	1	66	223

Indexing time on real-world datasets (seconds).

	AIDS	PDBS	PCM	PPI
Datasets	28.1	27.5	7.2	4.2
CFQL	0.055	3.627	0.150	2.576
CT-Index	338	317	N/A	N/A
GGSX	109	4	1,138	146
Grapes	254	72	3,302	831

Memory cost on real-world datasets (MB).

Experiment Results on Indexing

$ \Sigma $	1	10	20	40	80
CT-Index	TOO	OOT	TOO	OOT	TOO
GGSX	28	105	194	184	167
Grapes	5	23	76	105	140
d(G)	4	8	16	32	64
CT-Index	9,653	TOO	TOO	TOO	TOO
GGSX	26	216	1,131	4,220	18,541
Grapes	13	79	275	706	2,807
V(G)	50	200	800	3200	12800
V(G) CT-Index	50 OOT	200 OOT	800 OOT	3200 OOT	12800 OOT
V(G)CT-IndexGGSX	50 OOT 35	200 OOT 198	800 OOT 1,078	3200 OOT 1,830	12800 OOT 8,630
V(G) CT-IndexGGSXGrapes	50 OOT 35 18	200 OOT 198 74	800 OOT 1,078 267	3200 OOT 1,830 464	12800 OOT 8,630 OOM
V(G)CT-IndexGGSXGrapesD	50 OOT 35 18 10 ²	200 OOT 198 74 10 ³	800 OOT 1,078 267 10 ⁴	3200 OOT 1,830 464 10 ⁵	12800 OOT 8,630 OOM 10 ⁶
V(G) CT-IndexGGSXGrapes D CT-Index	50 OOT 35 18 10 ² 62,178	200 OOT 198 74 10³ OOT	800 OOT 1,078 267 10 ⁴ OOT	3200 OOT 1,830 464 10 ⁵ OOT	12800 OOT 8,630 OOM 10 ⁶ OOT
V(G) CT-IndexGGSXGrapes D CT-IndexGGSX	50 OOT 35 18 10 ² 62,178 11	200 OOT 198 74 10 ³ OOT 174	800 OOT 1,078 267 10 ⁴ OOT 3,256	3200 OOT 1,830 464 10 ⁵ OOT OOT OOM	12800 OOT 8,630 OOM 10 ⁶ OOT OOT OOT

- Default Settings: $|\Sigma| = 20$, |d(G)| = 8, |V(G)| = 200 and |D| = 1000.
- OOT: out-of-time (24 Hours).
- OOM: out-of-memory (64GB).

Table 1. The indexing time on synthetic datasets (seconds).

Backup

Vary $ \Sigma $	1	10	20	40	80
Datasets	7.8	7.8	7.8	7.8	7.8
CFQL	0.0320	0.0258	0.0237	0.0214	0.0348
GGSX	0.3242	649	3,650	5,937	10,502
Grapes	0.5586	1,171	6,443	10,267	15,483
Vary $d(G)$	4	8	16	32	64
Datasets	4.8	7.8	13.7	25.9	50.2
CFQL	0.0222	0.0214	0.0167	0.0160	0.0180
GGSX	779	3,668	8,532	9,842	9,957
Grapes	1,360	6,475	15,181	17,756	18,152
Vary $ V(G) $	50	200	800	3200	12800
Vary V(G) Datasets	50 1.9	200 7.7	800 35.8	3200 122.1	12800 491.6
Vary V(G) DatasetsCFQL	50 1.9 0.0044	200 7.7 0.0205	800 35.8 0.1679	3200 122.1 0.1857	12800 491.6 1.0286
Vary V(G) Datasets CFQL GGSX	50 1.9 0.0044 1,116	200 7.7 0.0205 3,679	800 35.8 0.1679 7,723	3200 122.1 0.1857 2,607	12800 491.6 1.0286 2,608
Vary V(G) DatasetsCFQLGGSXGrapes	50 1.9 0.0044 1,116 1,940	200 7.7 0.0205 3,679 6,492	800 35.8 0.1679 7,723 19,265	3200 122.1 0.1857 2,607 19,658	12800 491.6 1.0286 2,608 N/A
Vary V(G) DatasetsCFQLGGSXGrapesVary D	50 1.9 0.0044 1,116 1,940 10 ²	200 7.7 0.0205 3,679 6,492 10 ³	800 35.8 0.1679 7,723 19,265 10 ⁴	3200 122.1 0.1857 2,607 19,658 10⁵	12800 491.6 1.0286 2,608 N/A 10 ⁶
Vary V(G) DatasetsCFQLGGSXGrapesVary D Datasets	50 1.9 0.0044 1,116 1,940 10 ² 0.8	200 7.7 0.0205 3,679 6,492 10 ³ 8	800 35.8 0.1679 7,723 19,265 10 ⁴ 77	3200 122.1 0.1857 2,607 19,658 10⁵ 778	12800 491.6 1.0286 2,608 N/A 10 ⁶ 7,787
Vary V(G) DatasetsCFQLGGSXGrapesVary D DatasetsCFQL	50 1.9 0.0044 1,116 1,940 10 ² 0.8 0.0193	200 7.7 0.0205 3,679 6,492 10 ³ 8 0.0227	800 35.8 0.1679 7,723 19,265 10 ⁴ 77 0.0387	3200 122.1 0.1857 2,607 19,658 10⁵ 778 0.0424	12800 491.6 1.0286 2,608 N/A 10 ⁶ 7,787 0.0437
Vary V(G) DatasetsCFQLGGSXGrapesVary D DatasetsCFQLGGSX	50 1.9 0.0044 1,116 1,940 10 ² 0.8 0.0193 381	200 7.7 0.0205 3,679 6,492 10 ³ 8 0.0227 3,647	800 35.8 0.1679 7,723 19,265 10 ⁴ 77 0.0387 36,317	3200 122.1 0.1857 2,607 19,658 10 ⁵ 778 0.0424 N/A	12800 491.6 1.0286 2,608 N/A 10 ⁶ 7,787 0.0437 N/A

Memory cost on synthetic datasets (MB).

Selected References

[1]. F. Katsarou, N. Ntarmos, and P. Triantafillou. Performance and scalability of indexed subgraph query processing methods. In PVLDB, 2015.

[2]. K. Klein, N. Kriege, and P. Mutzel. Ct-index: Fingerprint-based graph indexing combining cycles and trees. In ICDE, 2011.

[3]. V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and D. Shasha. Enhancing graph database indexing by suffix tree structure. In Pattern Recognition in Bioinformatics, 2010.

[4]. R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and D. Shasha. Grapes: A software for parallel searching on biological graphs targeting multi-core architectures. In PloS one, 2013.

[5]. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism algorithm for matching large graphs. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004.

[6]. F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph matching by postponing cartesian products. In SIGMOD, 2016.

[7]. H. He and A. K. Singh. Graphs-at-a-time: query language and access methods for graph databases. In SIGMOD, 2008.