
Scaling Up Subgraph Query Processing
with Efficient Subgraph Matching

Shixuan Sun and Qiong Luo*

The Hong Kong University of Science and Technology

Subgraph Isomorphism

Given graphs 𝑔 = (𝑉, 𝐸, 𝐿) and 𝑔′ = (𝑉′, 𝐸′, 𝐿′), a subgraph
isomorphism from 𝑔 to 𝑔′ is an injective function 𝜑: 𝑉 → 𝑉′

that satisfies:

(1) ∀𝑢 ∈ 𝑉, 𝐿 𝑢 = 𝐿′(𝜑 𝑢);

(2) ∀𝑒(𝑢, 𝑢′) ∈ 𝐸, 𝑒(𝜑 𝑢 ,𝜑(𝑢′)) ∈ 𝐸′.

2

Example of Subgraph Isomorphism

Graph 𝑔. Graph 𝑔′.

3

𝜑0 = { 𝑢0 , 𝑣0 , 𝑢1 , 𝑣1 , 𝑢2, 𝑣2 , 𝑢3, 𝑣3 }

A Subgraph Isomorphism from 𝑔 to 𝑔′.

Problem Definition

Given a graph database 𝐷 = 𝐺1 , 𝐺2 , … , 𝐺𝑛 and a query graph 𝑞,
a subgraph query finds all data graphs in 𝐷 that contain 𝑞.

Applications:

 Computer-aided design;

 Protein interaction relationship retrieval.

4

A Naïve Solution

Loop over each data graph 𝐺 in graph database 𝐷 to test
whether 𝐺 contains the query graph 𝑞.

5

A Naïve Solution

Loop over each data graph 𝐺 in graph database 𝐷 to test
whether 𝐺 contains the query graph 𝑞.

The subgraph isomorphism problem is NP-complete.

Perform |𝐷| subgraph isomorphism tests.

6

IFV Procedure

7

Researchers proposed the indexing-filtering-verification (IFV)
procedure.

Reduce the number of subgraph isomorphism tests.

Indexing

Build an index on data graphs.

 Keys are features.

 Values are data graphs.

8

Example of Indexing

Feature Data Graph ID

(A, B) 𝐺1, 𝐺3,𝐺4

(A, C) 𝐺1, 𝐺2, 𝐺3,𝐺4

(B, C) 𝐺1 ,𝐺2 ,𝐺3

(B, D) 𝐺2,𝐺3,𝐺4

(C, D) 𝐺2,𝐺3,𝐺4

B

A

C

B

A

B

C

D

AB

D C

𝐺1 𝐺2

AB

D C

𝐺3 𝐺4

Graph Database 𝐷. Index 𝐼.

Build 𝐼 by exhaustively

enumerating all paths the
length of which is 1.

9

Index-Based Filtering

Filter data graphs based on the index.

1. Decompose 𝑞 into a collection 𝐹(𝑞) of features.

2. Generate a set 𝐶(𝑞) of candidate data graphs, each of which
contains 𝐹(𝑞).

10

Example of Index-Based Filtering

Feature Data Graph ID

(A, B) 𝐺1, 𝐺3,𝐺4

(A, C) 𝐺1, 𝐺2, 𝐺3,𝐺4

(B, C) 𝐺1,𝐺2 ,𝐺3

(B, D) 𝐺2,𝐺3,𝐺4

(C, D) 𝐺2,𝐺3,𝐺4
C

A

B B C

𝑓1

𝑓3

BA

A C𝑓2

Query Graph 𝑞. Index 𝐼.

Decompose

Feature Set 𝐹(𝑞).

Lookup Intersect

𝐶 𝑞 = {𝐺1, 𝐺3}

Candidate Set.

11

Example of Index-Based Filtering

B

A

C

B

A

B

C

D

AB

D C

𝐺1 𝐺2

AB

D C

𝐺3 𝐺4

Graph Database 𝐷.

12

C

A

B B C

𝑓1

𝑓3

BA

A C𝑓2

Query Graph 𝑞. Feature Set 𝐹(𝑞).

Verification

Verify whether each candidate graph contains the query graph.

 Consider the candidate set 𝐶(𝑞) instead of the entire graph
database 𝐷.

13

Drawbacks of IFV

Fail to build indices on large graph databases.

F. Katsarou, N. Ntarmos, and P. Triantafillou. Performance and scalability of indexed

subgraph query processing methods. In PVLDB, 2015. 14

Drawbacks of IFV

Fail to build indices on large graph databases.

Unsuitable for graphs that change frequently.

15

Drawbacks of IFV

Fail to build indices on large graph databases.

Unsuitable for graphs that change frequently.

Slow verification algorithms.

16

Subgraph Matching

Given a data graph 𝐺 and a query graph 𝑞, subgraph matching
finds all subgraph isomorphisms from 𝑞 to 𝐺.

17

Opportunities from Subgraph Matching

The latest subgraph matching algorithms can speed up the
verification step in subgraph queries.

The preprocessing-enumeration methodology of latest subgraph
matching algorithms can also be applied for subgraph queries.

18

Preprocessing of Subgraph Matching

Given 𝑞 and 𝐺, a candidate vertex set Φ(𝑢) of 𝑢 ∈ 𝑉(𝑞) is
complete if Φ(𝑢) satisfies: if the mapping (𝑢, 𝑣) exists in a
subgraph isomorphism from 𝑞 to 𝐺 where 𝑣 ∈ 𝑉(𝐺), then 𝑣 ∈ Φ(𝑢).

19

Preprocessing of Subgraph Matching

Given 𝑞 and 𝐺, a candidate vertex set Φ(𝑢) of 𝑢 ∈ 𝑉(𝑞) is
complete if Φ(𝑢) satisfies: if the mapping (𝑢, 𝑣) exists in a
subgraph isomorphism from 𝑞 to 𝐺 where 𝑣 ∈ 𝑉(𝐺), then 𝑣 ∈ Φ(𝑢).

Preprocessing aims to minimize Φ(𝑢) without breaking its
completeness.

20

F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph matching by postponing

cartesian products. In SIGMOD, 2016.

Observation

Given 𝑞 and 𝐺, ∀𝑢 ∈ 𝑉 𝑞 ,Φ(𝑢) is complete. If ∃𝑢 ∈ 𝑉 𝑞 ,Φ 𝑢 = ∅,
then 𝐺 does not contain 𝑞.

21

vcFV Procedure

22

We design the vertex-connectivity based filtering-verification (vcFV)
procedure.

 Identify candidate graphs based on candidate vertex sets.

vcFV Procedure

23

Algo 1. The vcFV Procedure.

vcFV Procedure

① Use the preprocessing phase of latest subgraph

matching algorithms as the filtering function.

24

Algo 1. The vcFV Procedure.

vcFV Procedure

① Use the preprocessing phase of latest subgraph

matching algorithms as the filtering function.

② Modify the enumeration phase of

latest subgraph matching algorithms
as the verification function.

25

Algo 1. The vcFV Procedure.

Competing Algorithms

 CT-Index, GGSX and Grapes are the

top-performing IFV algorithms in the
previous performance study.

 CFL and GraphQL are the leading
subgraph matching algorithms.

 IvcFV algorithms are obtained by
integrating IFV algorithms with vcFV

algorithms.

A summary of competing algorithms.

26

Experimental Setup

Real-world Datasets:

Synthetic Datasets:

Set Σ = 20, 𝑑 𝐺 = 8, 𝑉 𝐺 = 200 and 𝐷 = 1000 as default.

Vary |Σ| from 1, 10, 20, 40 to 80.

Vary 𝑑(𝐺) from 4, 8, 16, 32 to 64.

Vary 𝑉 𝐺 from 50, 200, 800, 3200 to 12800.

Vary 𝐷 from 102, 103, 104, 105 to 106.
27

Filtering Precision

Filtering precision on the PCM dataset with |𝐸(𝑞)| varied.

 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

|𝑄|
σ𝑞∈𝑄

|𝐴(𝑞)|

|𝐶(𝑞)|
where 𝐴(𝑞) is the answer set and 𝐶(𝑞) is the candidate set.

 The filtering precision of vcFV algorithms is competitive with that of IFV algorithms.

 The filtering precision on dense query sets (𝑑 𝑞 ≥ 3) is higher than that on sparse query sets.

IFV vcFV IvcFV

Sparse

Queries Dense Queries
28

Query Time

Query time on PCM with |𝐸(𝑞)| varying.

IFV vcFV

IvcFV

 Query time is the time spent on processing a query, consisting of both filtering and verification time.

 Benefiting from efficient subgraph matching, vcFV and IvcFV algorithms significantly outperform IFV
algorithms.

 CFQL algorithm is competitive with vcGrapes and vcGGSX, the top-performing IFV algorithms
integrated with the state-of-the-art subgraph matching algorithms.

29

Scalability

Filtering time on synthetic datasets with 𝑄8𝑆.

CFQLCFQL

CFQL

 As the time complexity of the
filtering method of CFQL is
𝑂(|𝐸(𝑞)| × |𝐸(𝐺)|), the filtering
time of CFQL is roughly linear to
𝑑(𝐺), |𝑉(𝐺)| and |𝐷|.

 CFQL has a good scalability and
completes the filtering on all test
cases within 3 seconds.

CFQL

30

Conclusions

 The slow verification in existing IFV algorithms can lead us
over-estimate the gain of filtering.

 vcFV algorithms are competitive in both filtering precision and
time performance with that of top-performing IFV algorithms.

 vcFV algorithms can scale to hundreds of thousands of data
graphs and graphs of thousands of vertices without any indices.

31

Use vcFV algorithms instead of
IFV algorithms!

32

Download our source
code and datasets from

github by command:
git clone

https://github.com/RapidsAtHKU
ST/SubgraphContainment.git

Download our source
code and datasets from

github by command:
git clone

https://github.com/RapidsAtHKU
ST/SubgraphContainment.git

Thanks. Q&A

Why Separate the Process into Two Steps?

35

Why Separate the Process into Two Steps?

Examine the bottleneck of subgraph query processing.

36

Why Separate the Process into Two Steps?

Examine the bottleneck of subgraph query processing.

Combine different filtering and verification functions.

37

Filtering Time

Filtering time on PCM with |𝐸(𝑞)| varying.

 Filtering time is the time spent on the filtering step.

 There is no single winner on all cases.

 The absolute value of the filtering time is very small.

IFV

vcFV

IvcFV 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 < 0.05 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

38

Per SI Test Time

Per SI test time on PCM with |𝐸(𝑞)| varying.

IFV
vcFV

IvcFV

 𝑃𝑒𝑟 𝑆𝐼 𝑇𝑒𝑠𝑡 𝑇𝑖𝑚𝑒 =
1

|𝑄|
σ𝑞∈𝑄

𝑇𝑉(𝐷,𝑞)

|𝐶(𝑞)|
where 𝑇𝑣(𝐷, 𝑞) is the time spent on the verification step.

 Efficient subgraph matching leads to the significant performance improvement of the verification.

 The slow verification in IFV algorithms can lead us to over-estimate the gain of filtering.

 Although the SI test is NP-complete, the filtering time can dominate the query time.

39

Experimental Setup

Algorithm Configuration:

 Grapes, vcGrapes: Use 6 threads and enumerate paths of up to a length of 4.

 GGSX, vcGGSX: Enumerate paths of up to a length of 4.

 CT-Index: Enumerate trees and cycles of up to a length of 4.

Experiment Environment:

 The binary of CT-Index is implemented by JAVA, while the other algorithms are
implemented in C++.

 Perform all experiments on a 64-bit Linux machine equipped with two Intel Xeon E5-2650
V3 processors and 64GB RAM.

40

Experimental Setup

Query Sets:

Given a dataset, we generate 8 query sets including 4 dense query sets and 4 sparse
query sets.

Each query set contains 100 query graphs with the same number of edges.

The number of edges varies from 4, 8, 16 to 32. We use 𝑄𝑖𝐷 and 𝑄𝑖𝑆 to denote dense
query sets and sparse query sets with 𝑖 edges respectively.

41

Scalability

Filtering precision on synthetic datasets with 𝑄8𝑆.

CFQL

 CFQL is competitive with the
top-performing IFV and IvcFV
algorithms on all cases.

 The filtering precision of CFQL is
reasonable, which is greater
than 0.75 on all cases.

vcGrapesGrapes

42

Backup

Statistics of query sets on the real-world datasets.

43

Backup

Indexing time on real-world datasets (seconds).

Memory cost on real-world datasets (MB).

44

Experiment Results on Indexing

 Default Settings: Σ = 20, 𝑑 𝐺 = 8,

𝑉 𝐺 = 200 and 𝐷 = 1000.
 OOT: out-of-time (24 Hours).

 OOM: out-of-memory (64GB).

Table 1. The indexing time on synthetic datasets (seconds).

45

Backup

Memory cost on synthetic datasets (MB). 46

Selected References

[1]. F. Katsarou, N. Ntarmos, and P. Triantafillou. Performance and scalability of indexed subgraph
query processing methods. In PVLDB, 2015.

[2]. K. Klein, N. Kriege, and P. Mutzel. Ct-index: Fingerprint-based graph indexing combining cycles
and trees. In ICDE, 2011.

[3]. V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and D. Shasha. Enhancing graph database indexing
by suffix tree structure. In Pattern Recognition in Bioinformatics, 2010.

[4]. R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and D. Shasha. Grapes: A software for
parallel searching on biological graphs targeting multi-core architectures. In PloS one, 2013.

[5]. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism algorithm for
matching large graphs. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004.

[6]. F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph matching by postponing cartesian
products. In SIGMOD, 2016.

[7]. H. He and A. K. Singh. Graphs-at-a-time: query language and access methods for graph
databases. In SIGMOD, 2008.

47

