
Efficient Parallel Subgraph Enumeration
on a Single Machine

Shixuan Sun Yulin Che Lipeng Wang Qiong Luo
Department of Computer Science and Engineering, Hong Kong University of Science and Technology

{ssunah, yche, lwangay, luo}@cse.ust.hk

Abstract—Subgraph enumeration finds all subgraphs in an
unlabeled graph that are isomorphic to another unlabeled graph.
Existing depth-first search (DFS) based algorithms work on
a single machine, but they are slow on large graphs due to
the large search space. In contrast, distributed algorithms on
clusters adopt a parallel breadth-first search (BFS) and improve
the performance at the cost of large amounts of hardware
resources, since the BFS approach incurs expensive data transfer
and space cost due to the exponential number of intermediate
results. In this paper, we develop an efficient parallel subgraph
enumeration algorithm for a single machine, named LIGHT. Our
algorithm reduces redundant computation in DFS by deferring
the materialization of pattern vertices until necessary and con-
verting the candidate set computation into finding a minimum
set cover. Moreover, we parallelize our algorithm with both
SIMD (Single-Instruction-Multiple-Data) instructions and SMT
(Simultaneous Multi-Threading) technologies in modern CPUs.
Our experimental results show that LIGHT running on a single
machine outperforms existing single-machine DFS algorithms by
more than three orders of magnitude, and is up to two orders of
magnitude faster than the state-of-the-art distributed algorithms
running on 12 machines. Additionally, LIGHT completed all test
cases, whereas the existing algorithms fail in some cases due to
either running out of time or running out of available hardware
resources.

I. INTRODUCTION

Given an unlabeled graph P (called a pattern graph) and an
unlabeled graph G (called a data graph), subgraph enumeration
finds all subgraphs in G that are isomorphic to P . As one of
the fundamental graph analysis operations, it is widely used in
real-world applications, such as network motif discovery [26],
subgraph frequencies computation [23], the evolution of social
networks study [10] and graphlet kernel computation [22].

Due to its importance, subgraph enumeration receives a
lot of research interests. The algorithms working on a sin-
gle machine [6], [7], [11] focus on designing filtering rules
and optimizing enumeration orders. They all adopt the same
in-memory enumeration method that expands partial results
vertex-by-vertex along an order of pattern vertices, which is a
DFS method. The advantage of the DFS-style approaches is
that they consume a small amount of memory during the enu-
meration. However, due to the lack of the label information,
subgraph enumeration is computationally challenging.

Recently, several distributed algorithms [3], [12], [13],
[19] have been proposed to handle large data graphs by
parallelization. To exploit the parallelism in subgraph enu-
meration, these algorithms model subgraph enumeration as
the join problem by decomposing P into small components

and joining the results of the components to obtain the final
results. Even though this parallel BFS approach with the
bulk synchronous parallel (BSP) model has led to significant
performance improvement over the algorithms working on a
single machine, it has to maintain an exponential number of
intermediate results, because the computation of the current
iteration depends on the results of the previous one. As a result,
the disk I/O and the data shuffling of the intermediate results
seriously degrade the performance even with the compression
techniques [19]. Additionally, distributed computing resources
have higher economic cost as well as maintenance cost than
single machines.

Our Approach. Considering the problems in subgraph
enumeration, we propose an efficient parallel subgraph enu-
meration algorithm for a single machine, named LIGHT. Our
key observation is that there is a large amount of redundant
computation (i.e., set intersections) in the enumeration proce-
dure. In the following, we use an example to briefly introduce
the basic enumeration method, called SE, and illustrate our
observation.

Example I.1. Given P and G in Figures 1a and 1b, the
enumeration order π, which is a permutation of pattern
vertices, is (u0, u2, u1, u3). SE recursively expands partial
results vertex-by-vertex along π by mapping a pattern ver-
tex to a data vertex at each step to enumerate all results.
Figure 1c presents the process of expanding the partial result
ϕ1 = {(u0, v0), (u2, v101)} by mapping u1 to a data vertex.
The process contains two phases: the computation and the
materialization. The computation is to obtain the candidate
set of u1 given ϕ1, denoted as Cϕ1

(u1), by intersecting the
neighbor sets of data vertices mapped to the pattern vertices
in Nπ

+(u1), which contains the neighbors of u1 positioned
before u1 in π. In this example, Nπ

+(u1) = {u0, u2} and
Cϕ1(u1) = {v1−100}. After the computation, the materializa-
tion is to extend ϕ1 by mapping u1 to data vertices in Cϕ1

(u1)
but not in ϕ1. Figure 1c derives ϕ2 from ϕ1 by mapping u1

to v1.
Figure 1d visualizes the enumeration as a search tree

whose nodes and edges denote partial results and mappings
respectively, for example, ϕr = {}, ϕ0 = {(u0, v0)}, ϕ1 =
{(u0, v0), (u2, v101)} and e(ϕ0, ϕ1) denotes (u2, v101). As the
search tree is large, we illustrate part of it for brevity. We focus
on ϕ1 in the tree. In the materialization phase, SE extends ϕ1

by mapping u1 to candidates that are in Cϕ1
(u1) but not in ϕ1,

0
u

1
u

2
u

3
u

(a) Pattern graph P .

... ...

0
v

1
v 2

v
9 9

v

1 0 0
v

1 0 1
v

(b) Data graph G.

1

2

0
u

1
u

2
u

3
u

0
v

1 0 1
v

 
1 1 0 1 0 1 1 1 0 0

() () ()C u N v N v v
 

 

? ?

0
u

1
u

3
u

0
v

1 0 1
v

?

2
u

1
v

C o m p u ta tio n

M a te r ia l iza t io n

(c) Expand a partial result.

0
u

1
u

2
u

3
u

0
v

1
v

2
v

2
v

3
v

1
v

3
v

√

1
v

...

...

......

...

...

...
...



r


0


1


2


3


4


5


6


7


9


1 0 1
v

1 0 1
v

1 0 0
v

1 0 0
v

1 0 0
v

√√√ √ √
8



(d) Search tree of SE.

0
v

1
v

2
v

4


1 0 1
v

√

0
u

1
u

2
u

3
u



r


0


0 2 0
() ()C u N v




1


1 1 0 1 0 1
() () ()C u N v N v




2


2 3 0 1 0 1
() () ()C u N v N v




(e) Search path of SE.
Fig. 1: Running example of SE.

and generates 100 new partial results, denoted as ∆(ϕ1). We
find that given the partial results in ∆(ϕ1) (i.e., the partial
results in the dashed rectangle) the same set intersection is
repeated in the computation of the candidate sets of u3, for
example, Cϕ2(u3) = Cϕ3(u3) = N(v0)

⋂
N(v101), because

given any ϕ ∈ ∆(ϕ1), Nπ
+(u3) = {u0, u2}, ϕ(u0) = v0 and

ϕ(u2) = v101. Then, there are 99 redundant set intersections
among partial results in ∆(ϕ1). We can eliminate the redun-
dant computation by deferring the materialization of u1 as
shown in Figure 2a.

Next, we focus on a simple search path from the root node
to the leaf node, which is shown in Figure 1e. The computation
of each candidate set is illustrated in the rectangle. Along this
search path, SE conducts 2 set intersections in total, which
can be reduced to only one set intersection. Specifically, SE
computes Cϕ2

(u3) by intersecting N(v0) and N(v101), but the
result of intersecting N(v0) and N(v101) has been obtained
and cached in Cϕ1

(u1). If we assign Cϕ1
(u1) to Cϕ2

(u3) as
shown in Figure 2b, then we can reduce 1 set intersection in
the path.

0
u

1
u

2
u

3
u

0
v

1
v

...
...

...
...



r


0


1


2


3


1 0 1
v

1 0 1
v



0
(,)M A T u

2
(,)C O M P u

2
(,)M A T u

1
(,)C O M P u

3
(,)C O M P u

 1 1 0 0
v



 1 1 0 0
v



(a) Search tree of LIGHT.

0
u

1
u

2
u

3
u

0
v



r


0


1


2


1 0 1
v

0 2 0
() ()C u N v




1 1 0 1 0 1
() () ()C u N v N v




3


 1 1 0 0
v



 1 1 0 0
v



2 13 1
() ()C u C u

 


(b) Search path of LIGHT.
Fig. 2: Running example of LIGHT.

In order to solve the problems in Example I.1, LIGHT
adopts the lazy materialization strategy and the minimum set
cover based candidate set computation method. Specifically,
instead of immediately materializing the pattern vertices after
computing their candidate sets, the lazy materialization defers

the materialization of pattern vertices until necessary. Further-
more, we convert the candidate set computation into finding
the minimum set cover in order to minimize the number of set
intersections to compute a candidate set of u by utilizing the
candidate sets of vertices before u in the enumeration order.

Finally, we parallelize LIGHT to further improve its perfor-
mance. We identify two kinds of parallelism in LIGHT: the
fine-grained parallelism in set intersections and the coarse-
grained parallelism among the partial results. As such, we
utilize SIMD (Single-Instruction-Multiple-Data) instructions
on vector registers to parallelize set intersections and use SMT
(Simultaneous Multi-Threading) techniques in the multi-core
processors to process the partial results in parallel.

In summary, we make the following contributions.

• We propose an efficient parallel subgraph enumeration
algorithm LIGHT for a single machine.

• We design the lazy materialization technique to reduce
redundant computation.

• We propose the minimum set cover based candidate set
computation method to further reduce redundant compu-
tation.

• We fully exploit both SIMD and SMT in modern CPUs
to boost the performance of subgraph enumeration.

We conduct detailed experiments on a variety of real-world
datasets to evaluate LIGHT. Experimental results show that
LIGHT outperforms DUALSIM [11], the state of the art on a
single machine, by up to three orders of magnitude. Compared
with the state-of-the-art distributed algorithms SEED [13] and
CRYSTAL [19] running on 12 machines, LIGHT achieves
a speedup of up to two orders of magnitude. Additionally,
LIGHT is the only algorithm completing all test cases.

Paper Organization. Section II presents the preliminaries
and the related work. Section III gives an overview of the basic
subgraph enumeration algorithm. Sections IV and V introduce
the lazy materialization and the minimum set cover based
candidate set computation respectively. Section VI presents
the method that optimizes the enumeration order. The parallel
implementation is discussed in Section VII. We evaluate our
algorithm in Section VIII and conclude in Section IX.

II. BACKGROUND

A. Preliminaries

In this subsection, we present the preliminaries and illustrate
the frequently used notations in Table I. We focus on the
unlabeled undirected graph g = (V,E), where V is a set of
vertices and E is a set of edges. Let g1 and g2 be two graphs.
If V (g1) ⊆ V (g2) and E(g1) ⊆ E(g2), then g1 is a subgraph
of g2. Given g and V ′ ⊆ V (g), the vertex-induced subgraph
of g constructed on V ′ is denoted as g[V ′] = (V ′, E′) where
E′ = {e(u, u′)|u, u′ ∈ V ′ and e(u, u′) ∈ E(g)}.

Definition II.1. Subgraph Isomorphism (Match): Given g =
(V,E) and g′ = (V ′, E′), a subgraph isomorphism from g to
g′ is an injective function ϕ : V → V ′ such that ∀e(u, u′) ∈
E, e(ϕ(u), ϕ(u′)) ∈ E′.

We call a subgraph isomorphism from g to g′ a match. g
is isomorphic to g′ if and only if there exists a match from
g to g′, |V (g)| = |V (g′)|, and |E(g)| = |E(g′)|. The goal
of subgraph enumeration is to find all subgraphs in the data
graph G that are isomorphic to the pattern graph P .

An automorphism of P is a match from P to itself. Because
of the automorphism, a subgraph in G that is isomorphic to
P can result in duplicate matches from P to G. In order to
eliminate such duplicates, the symmetry breaking technique
[7] is proposed, which assigns partial order < to vertices and
requires the matches to satisfy that given u, u′ ∈ V (P), if
u < u′, then ϕ(u) < ϕ(u′). Similar to previous work [11]–
[13], [19], [21], we rearrange the IDs of vertices in V (G) as
ordered graphs to preserve the partial order: given any v, v′ ∈
V (G), v < v′ if and only if d(v) < d(v′) or d(v) = d(v′) and
ID(v) < ID(v′).

If P has only one automorphism, the goal of subgraph
enumeration is equivalent to finding all matches from P to
G. Otherwise, we adopt the symmetric breaking to avoid
duplicates. In this paper, for the ease of analysis, we assume
that there is only one automorphism. Thus, the problem
addressed in this paper is as follows.

Problem Statement. Given a pattern graph P and a data
graph G, find all matches from P to G.

We call the vertices in V (P) and V (G) the pattern ver-
tices and the data vertices respectively. R(P) denotes all the
matches from P to G. Thus, our goal is to find R(P). Next,
we list the definitions used in this paper.

Definition II.2. Enumeration Order: Given P , an enumeration
order π is a permutation of vertices in V (P). π[i] is the ith
vertex in π, and π[i : j] is the set of vertices from i to j where
1 6 i 6 j 6 n.

Given P and π, P [π[1 : i]], which is the vertex-induced
subgraph of P constructed on π[1 : i], is called the partial
pattern graph given π, denoted as Pπi .

Definition II.3. Backward Neighbors: Given P and π, the
backward neighbors of a pattern vertex u, denoted as Nπ

+(u),
are the neighbors of u positioned before u in π.

TABLE I: Notations.
Notations Descriptions
g, P , G graph, pattern graph and data graph
V (g), E(g) vertex set and edge set of g
n, m, N , M |V (P)|, |E(P)|, |V (G)| and |E(G)|
d(u), N(u) degree and neighbors of u
e(u, v) edge between u and v
π, σ enumeration order and execution order
g[V] vertex-induced subgraph of g given V
ϕ subgraph isomorphism (match)
Cϕ(u) candidate set of u given ϕ
Nπ+(u) backward neighbors of u in π
Pπi vertex-induced subgraph of P on π[1 : i]
Aπ(u), Fπ(u) anchor vertices and free vertices of u given π
R(P) matches from P to G
Φu the set of partial results corresponding to computing can-

didate sets of u
wu the estimated number of set intersections in a computation

of the candidate set of u
x fractional edge cover
ρ, ρ∗ fractional edge cover number and the optimal fractional

edge cover number

Definition II.4. Match Containment: Given P and G, suppose
that g and g′ are vertex-induced subgraphs of P , and ϕ and
ϕ′ are matches from g and g′ to G respectively. ϕ′ contains
ϕ if ∀(u, v) ∈ ϕ, (u, v) ∈ ϕ′.

Definition II.5. Candidate Set: Given P , G, π and u ∈ π,
suppose that P ′ is a vertex-induced subgraph of P such
that Nπ

+(u) ⊆ V (P ′) and ϕ is a match from P ′ to G.
The candidate set of u given ϕ, denoted as Cϕ(u), is
{v|v ∈ V (G) and ∀u′ ∈ Nπ

+(u), e(v, ϕ(u′)) ∈ E(G)}.
Cϕ(π[1]) = V (G).

Definition II.6. Min Property: Given a collection S of sets
where S has a constant cardinality, if the running time of the
set intersection

⋂
s∈S s is proportional to mins∈S |s|, then we

say the set intersection has the min property.

Definition II.7. Fractional Edge Cover [8]: Given a hyper-
graph H = (V,E) where V is a set of vertices and E is a set
of subsets of V , a fractional edge cover of H is a mapping
x : E → [0,∞) such that ∀u ∈ V,

∑
e∈E,u∈e x(e) > 1.

Given a hypergraph H and a fractional edge cover x, the
fractional edge cover number ρ is the value

∑
e∈E(H) x(e).

The optimal fractional edge cover number ρ∗ is the minimum
number of all fractional edge covers of H .

Connected Enumeration Order. π is a connected enumer-
ation order if ∀1 < i 6 n,Nπ

+(π[i]) 6= ∅. In this paper, we
assume that P is a connected graph and π is connected. Under
this assumption, when we expand ϕ from Pπi to G to a new
match from Pπi+1 to G, the connected order enables us to
consider only the neighbors of the data vertices mapped to
the backward neighbors of π[i+ 1] instead of scanning all the
data vertices, which can reduce the search space.

Graph Storage in Memory. We store the graph with
the compressed sparse row (CSR) format in memory, which
contains an offset array and a neighbors array. Specifically, the
neighbors of vertices are sorted by their IDs, and we consume
O(1) time to retrieve the neighbor set of a vertex with the CSR
format. Each ID is a 32-bit unsigned integer.

Worst-Case Optimal Join (WCOJ). WCOJ algorithms are
a class of join algorithms whose running time matches the

maximum output size of a given join query [16]. Recently,
researchers derived a tight bound on the output size in terms
of the fractional edge cover, called the AGM bound [4]. WCOJ
algorithms run in time of O(|IN |ρ∗), where |IN | is the input
size and ρ∗ is the optimal fractional edge cover number, from
the AGM bound. Example WCOJ algorithms include NPRR
[17] and Leapfrog Triejoin [25].

Example II.1. Given a data graph G, let M = |E(G)|. Given
P in Figure 1a as the query, a fractional edge cover x of
P is x(e(u0, u2)) = 0 and x(e(u0, u1)) = x(e(u1, u2)) =
x(e(u2, u3)) = x(e(u0, u3)) = 1

2 . The fractional edge cover
number of x is

∑
e∈E(P) x(e) = 2. Moreover, this value

is the optimal fractional edge cover number of P , denoted
as ρ∗. Then, AGM 6 M2. Therefore, query P produces
O(M2) results. Notably, this bound is tight if you consider G
a complete graph on

√
M vertices. For this complete graph,

query P produces Ω(M2) results.

Assumptions. In summary, we have the following assump-
tions in this paper for the ease of analysis.

1) P is connected and |V (P)| (i.e., n) is a constant value.
2) π is connected (i.e., ∀1 6 i 6 n, Pπi is connected).

B. Related Work

To put our work in context, we categorize the related work
into two classes: labeled subgraph enumeration and unlabeled
subgraph enumeration.

Labeled Subgraph Enumeration. Because the label in-
formation can significantly reduce the search space, most
labeled subgraph enumeration algorithms work on a single
machine and support larger pattern graphs (tens of vertices)
than unlabeled subgraph enumeration. They focus on design-
ing effective filtering strategies (e.g., the neighborhood label
frequency filter) to prune invalid candidates and optimize the
enumeration order to reduce the search space [5], [9].

Unlabeled Subgraph Enumeration. Unlabeled subgraph
enumeration can be viewed as a special case of labeled
subgraph enumeration that all vertices have the same label.
Due to the lack of labels, unlabeled subgraph enumeration
has a large search space.

Distributed Algorithms. To handle the large search space,
most of the recent work utilizes distributed environments to
parallelize the search. Afrati et al. [3] proposed a multiway join
based approach to process subgraph enumeration in one map-
reduce round. Shao et.al [21] presented an approach based on
Giraph. Lai et al. presented TwinTwig [12] and SEED [13]
on MapReduce. To reduce the output/shuffle cost, Qiao et al.
proposed CRYSTAL [19] to compress the intermediate results.

Algorithms on a Single Machine. N. Chiba et al. [6] pro-
posed an edge-searching based strategy. Some researchers [7],
[26] improved the performance by the symmetry breaking
technique. Kim et al. [11] designed a disk-based algorithm
DUALSIM to handle the data graphs that cannot reside in
the memory. The in-memory enumeration procedure of these
algorithms all adopts the DFS method. In comparison, Empty-

Algorithm 1: SE Algorithm
Input: a pattern graph P and a data graph G
Output: all matches from P to G

1 begin
2 π ← compute a connected enumeration order of V (P);
3 i← 1, ϕ← {};
4 foreach v ∈ V (G) do
5 Add (π[i], v) to ϕ;
6 Enumerate(π, ϕ, i+ 1);
7 Remove (π[i], v) from ϕ;
8 Procedure Enumerate(π, ϕ, i)
9 if i = |π|+ 1 then Output ϕ, return;

/* The computation phase. */
10 Cϕ(π[i])← ComputeCandidates(π[i], ϕ);

/* The materialization phase. */
11 foreach v ∈ Cϕ(π[i]) do
12 if v /∈ ϕ.values then Same as Lines 5-7;
13 Function ComputeCandidates(u, ϕ)
14 Cϕ(u)←

⋂
u′∈Nπ

+
(u)N(ϕ(u′));

15 return Cϕ(u);

Headed [1], a relational engine for graph processing, utilizes
WCOJ algorithms to answer queries.

Other Work. Except the approaches finding the exact solu-
tions, there are also approximation solutions [15] and algo-
rithms working on triangle patterns [18].

In this paper, we focus on unlabeled subgraph enumera-
tion on a single machine that finds exact solutions. More
specifically, we improve the performance of the in-memory
enumeration procedure, which is widely used in existing
unlabeled subgraph enumeration algorithms, by (1) reducing
redundant computation and (2) parallelization.

III. OVERVIEW & COST ANALYSIS

In this section, we introduce the basic subgraph enumeration
algorithm and analyze it in detail.

A. Basic Subgraph Enumeration Algorithm

The algorithms working on a single machine utilize a
method proposed by Ullmann [24] in 1976 to find all matches.
Algorithm 1 presents this algorithm called SE in this paper.
SE first generates a connected enumeration order π, and
then expands partial results recursively along π. ϕ records
the mappings from P to G in which ϕ.keys and ϕ.values
denote pattern vertices and data vertices in ϕ respectively.
Given a partial result ϕ whose next pattern vertex in π is
u (i.e., π[i]), the computation phase generates Cϕ(u) (Line
10) and the materialization phase extends ϕ by mapping u
to candidates that are in Cϕ(u) but not in ϕ.values (Lines
11-12). In particular, we assume that the set intersection at
line 14 satisfies the min property. The enumeration procedure
conceptually constructs a search tree on the fly and explores
it in the DFS manner. A running example of SE has been
introduced in Example I.1.

B. Cost Analysis

Memory. Except P and G, SE maintains a partial result dur-
ing the enumeration, which consumes O(n) memory. SE keeps
a candidate set for each pattern vertex except the first one in
the enumeration order. Because there are no duplicate vertices
in a candidate set, the candidate sets consume O(dmax × n)
space where dmax = maxv∈V (G) d(v).

Runtime Guarantees of SE. SE is a specialization of a
WCOJ algorithm Leapfrog Triejoin [25]. The enumeration
procedure of SE is the same as Leapfrog Triejoin that performs
self-joins on E(G), which can be viewed as a relation with the
source and the destination vertices as attributes, and requires
pattern vertices to map to different data vertices in a result. As
such, the running time of SE also matches the AGM bound.
In the following, we use an example to illustrate this point.

Example III.1. Following Example II.1, SE will output
Ω(M2) results when G is a complete graph on

√
M vertices.

Given ϕ (0 6 |ϕ| < 4), SE derives at most
√
M new partial

results from ϕ. Therefore, there are at most
∑3
i=0 (
√
M)

i

partial results in the search tree of SE except that at depth
4. For each of these partial results, the computation phase
takes O(

√
M) time because of the min property, and the

materialization phase also takes O(
√
M) time as a candidate

set contains O(
√
M) vertices. The running time of SE is

O(
√
M
∑3
i=0 (
√
M)

i
) = O(M2). The check at line 12 will

not affect the correctness of the analysis, because it can be
easily implemented with a hash table and |ϕ| is a constant
value.

Cost Model. Independent of the runtime guarantees, we
need a cost model to examine the performance factors and
optimize the enumeration order. Given P , G and π, the overall
cost T includes the cost of the materialization phase, denoted
as TM , and the cost of the computation phase, denoted as
TC . The DFS-style algorithm expands partial results vertex-
by-vertex along π. Then, TM can be estimated as follows.

TM =

n∑
i=1

|R(Pπi)|. (1)

In order to expand a partial result, the DFS-style algorithm
needs to compute the candidate set of the next pattern vertex
u in π. Equivalently, the computation of a candidate set of u
corresponds to a partial result. Then, we define Φu as follows.

Definition III.1. Given P , G, π and u ∈ π, Φu contains all
the partial results corresponding to computing the candidate
set of u. Φπ[1] = ∅ because Cϕ(π[1]) is V (G).

wu is the number of set intersections in computing a
candidate set of u and α is the average cost of one set
intersection. TC can be calculated as follows.

TC = α
∑
u∈π

wu|Φu|. (2)

Cost of SE. We focus on the cost of the computation phase
in SE. Φ

(1)
u and w(1)

u denote the values in SE to differentiate
that in LIGHT. We have the following proposition. Due to
space limit, we only present the proof sketch.

Proposition III.1. Given P , G and π, u = π[i+ 1] (1 6 i <

n). Then, Φ
(1)
u = R(Pπi) in SE.

Proof. (1) Given ϕ ∈ Φ
(1)
u , ϕ contains i mappings. Line 14

ensures that ∀e(u′, u′′) ∈ E(Pπi), e(ϕ(u′), ϕ(u′′)) ∈ E(G).

Line 12 guarantees that there are no duplicate data vertices in
ϕ. Then, ϕ belongs to R(Pπi). Therefore, Φ

(1)
u ⊆ R(Pπi).

(2) With a constructive proof, we can derive that given
ϕ ∈ R(Pπi), ϕ can be generated by Algorithm 1. Then, ϕ
corresponds to the computation of the candidate set of u (i.e.,
ϕ ∈ Φ

(1)
u). Therefore, R(Pπi) ⊆ Φ

(1)
u .

With (1) and (2), we get that Φ
(1)
u = R(Pπi) and the

proposition is proved.

Based on Proposition III.1, |Φ(1)
u | can be calculated as

follows. As |Φ(1)
π[1]| = ∅, we set |Φ(1)

π[1]| = 0.

|Φ(1)
u | =

{
0, u = π[1];
|R(Pπi)|, u = π[i+ 1] (1 6 i < n).

(3)

SE conducts set intersections over the neighbor sets of the
data vertices mapped to the backward neighbors of u to com-
pute the candidate set of u. Therefore, w(1)

u can be estimated
by Equation 4. We set w(1)

π[1] = 0, since Nπ
+(π[1]) = ∅.

w(1)
u =

{
0, u = π[1];
|Nπ

+(u)| − 1, u = π[i+ 1] (1 6 i < n).
(4)

IV. LAZY MATERIALIZATION SUBGRAPH ENUMERATION

In this section, we propose the lazy materialization subgraph
enumeration algorithm LIGHT and give an analysis.

A. General Idea

During the enumeration, SE immediately maps a pattern
vertex to its candidates after computing the candidate set.
However, the early materialization can incur a large amount
of redundant computation. In order to solve the problem, we
design the lazy materialization that defers the materialization
of pattern vertices until necessary. Specifically, given a pattern
vertex u, during the enumeration along the given order, we
generate the candidate set of u without immediate material-
ization and do not materialize u until the computation of the
candidate sets of some other vertices requiring u.

B. Lazy Materialization

We present the Lazy materIalization subGrapH enu-
meraTion algorithm LIGHT in Algorithm 2. After obtaining
π, we generate a new order σ for the enumeration instead of
π (Lines 2-3). To differentiate from π, we call σ the execution
order. The ith element in σ is a pair of values, σi.mode
and σi.vertex. σi.mode specifies the operation, including the
computation (COMP in short) or the materialization (MAT
in short), in the Enumerate procedure, and σi.vertex is the
pattern vertex corresponding to the operation.

Lines 18-29 present the method that generates σ. As the
candidate set of π[1] is V (G), lines 21-26 loop over all
pattern vertices except π[1]. Given u, we need to ensure
that the backward neighbors of u have been materialized
before computing the candidate set of u. Therefore, lines
22-26 guarantees that the MAT operations of the backward
neighbors of u are positioned before the COMP operation of

u in σ. After lines 27-28, σ contains the MAT operations of
all pattern vertices.

LIGHT enumerates all matches from P to G along σ
(Lines 9-17). If all pattern vertices have been mapped to
data vertices, we output ϕ (Line 10). If the operation is
COMP , then we compute Cϕ(u) and invoke the Enumerate
recursively if Cϕ(u) is not empty (Lines 12-14). Otherwise,
we materialize u and continue the enumeration (Lines 15-17).
The ComputeCandidates used in LIGHT will be discussed in
Section V. For simplicity, we regard that LIGHT still uses the
ComputeCandidates in Algorithm 1 until then.

Example IV.1. Following Example I.1, Figure 2a illustrates
the search tree of LIGHT. Given π, LIGHT obtains that
σ = ((MAT, u0), (COMP, u2), (MAT, u2), (COMP, u1),
(COMP, u3), (MAT, u1), (MAT, u3)). Take ϕ1 as an exam-
ple. LIGHT obtains that Cϕ1

(u1) = {v1−100} and skips the
materialization of u1. We mark the edge as dashed line in
Figure 2a. At ϕ3, u0 and u2 have been mapped. Moreover,
u1 and u3 have obtained their candidate sets Cϕ3(u1) =
Cϕ3(u3) = {v1−100}. LIGHT materializes u1 and u3 to find
all matches in the subtree rooted at ϕ1, which is equivalent to
conduct Cartesian products over Cϕ3

(u1) and Cϕ3
(u3). We

omit this part for brevity. The number of set intersections in
the subtree rooted at ϕ1 (exclude ϕ1) is reduced from 100 in
SE to 1.

C. Analysis
With the same method as in Example III.1, we can show

that the running time of LIGHT also matches the AGM bound.
Due to page limit, we omit the details. Next, we compare the
cost of the computation phase of LIGHT with that of SE under
the cost model in Section III-B.

We define the anchor vertices and free vertices as follows.

Definition IV.1. Anchor Vertices and Free Vertices: Given P ,
G, π and σ, anchor vertices of u ∈ V (P), denoted as Aπ(u),
are the vertices u′ satisfy that (1) u′ is positioned before u in
π; and (2) the MAT operation of u′ is before the COMP of
u in σ. Free vertices of u ∈ V (P), denoted as Fπ(u), are the
vertices u′ satisfy that (1) u′ is positioned before u in π; and
(2) the MAT operation of u′ is after the COMP of u in σ.

Based on Definition IV.1, we have the following proposition.

Proposition IV.1. Given P , G, π and σ, suppose that u =
π[i + 1] (1 6 i < n). Aπ(u) is a vertex cover of Pπi and
P [Aπ(u)] is a connected vertex-induced subgraph of Pπi .

Moreover, we can get the following proposition similar to
Proposition III.1. We omit the proof for brevity.

Proposition IV.2. Given P , G, π and σ, suppose that
u = π[i + 1] (1 6 i < n) and Φ

(2)
u contains all partial

results corresponding to the computation of candidate sets
of u in LIGHT. If ϕ ∈ Φ

(2)
u , then ϕ ∈ R(P [Aπ(u)]) and

∀u′ ∈ Fπ(u), Cϕ(u′) 6= ∅; and vice versa.

Given P and G, both SE and LIGHT adopt the same π and
u = π[i+ 1] (1 6 i < n). According to Proposition III.1 and

Algorithm 2: LIGHT Algorithm
Input: a pattern graph P and a data graph G
Output: all matches from P to G

1 begin
2 π ← compute a connected enumeration order of V (P);
3 σ ← GenerateExecutionOrder(π, P);
4 i← 1, u← π[i], ϕ← {};
5 foreach v ∈ V (G) do
6 Add (u, v) to ϕ;
7 Enumerate(σ, ϕ, i+ 1);
8 Remove (u, v) from ϕ;
9 Procedure Enumerate(σ, ϕ, i)

10 if i = |σ|+ 1 then Output ϕ, return;
11 u← σi.vertex;
12 if σi.mode is COMP then

/* The computation phase. */
13 Cϕ(u)← ComputeCandidates(u, ϕ);
14 if Cϕ(u) 6= ∅ then Enumerate(σ, ϕ, i+ 1);
15 else

/* The materialization phase. */
16 foreach v ∈ Cϕ(u) do
17 if v /∈ ϕ.values then Same as Lines 6-8;
18 Function GenerateExecutionOrder(π, P)
19 Set u.visited as false for each u ∈ V (P);
20 σ ← ();
21 foreach u ∈ π along its order in π except π[1] do
22 foreach u′ ∈ Nπ+(u) along its order in π do
23 if u′.visited is false then
24 u′.visited← true;
25 Add (MAT, u′) to σ;
26 Add (COMP, u) to σ;
27 foreach u ∈ π along its order in π do
28 if u.visited is false then Add (MAT, u) to σ;
29 return σ;

IV.2, |Φ(1)
u | in SE is equal to |R(Pπi)|, and |Φ(2)

u | in LIGHT is
at most |R(P [Aπ(u)])|. Next, we use an example to illustrate
this result.

Example IV.2. Follow Example IV.1 and take u3, which is
the fourth vertex in π, as an example. Aπ(u3) = {u0, u2}
and Fπ(u3) = {u1}. P [Aπ(u3)] is a connected vertex-
induced subgraph of Pπ3 . |Φ(1)

u3 | in SE is equal to |R(Pπ3)|,
which is 600. |Φ(2)

u3 | in LIGHT is equal to the number of
partial results ϕ ∈ R(P [Aπ(u3)]) such that Cϕ(u1) 6= ∅,
which is 402. Furthermore, we can extend the partial result
ϕ ∈ Φ

(2)
u3 by mapping u1 to candidates in Cϕ(u1) to obtain the

partial results in Φ
(1)
u3 , because P [Aπ(u3)] is a vertex-induced

subgraph of Pπ3 . Note that we do not adopt the symmetry
breaking in this example for simplicity.

In the following, we have a more detailed discussion
on the computation cost of SE and LIGHT. Given ϕ ∈
Φ

(2)
u , ϕ belongs to R(P [Aπ(u)]) and satisfies that ∀u′ ∈

Fπ(u), Cϕ(u′) 6= ∅ based on Proposition IV.2. Because
P [Aπ(u)] is a vertex-induced subgraph of Pπi based on
Proposition IV.1, we can extend ϕ by mapping u′ ∈ Fπ(u) to
candidates in Cϕ(u′) in order to generate the matches from Pπi
to G, denoted as ∆(ϕ). Let ∆(Φ

(2)
u) denote the matches from

Pπi to G that are generated by extending ϕ ∈ Φ
(2)
u , we have

∆(Φ
(2)
u) ⊆ R(Pπi). Given ϕ ∈ R(Pπi), ϕ contains a match

ϕ′ ∈ R(P [Aπ(u)]), as P [Aπ(u)] is a vertex-induced subgraph
of Pπi . ϕ′ satisfies that ∀u′ ∈ Fπ(u), Cϕ′(u

′) 6= ∅. Thus,
ϕ′ ∈ Φ

(2)
u and ϕ ∈ ∆(Φ

(2)
u), therefore R(Pπi) ⊆ ∆(Φ

(2)
u).

Then, R(Pπi) = ∆(Φ
(2)
u).

In case Fπ(u) = ∅, we have R(Pπi) = ∆(Φ
(2)
u) = Φ

(2)
u .

Let X contain the pattern vertices u such that Fπ(u) 6= ∅.

Given ϕ ∈ Φ
(2)
u , suppose that for each u′ ∈ Fπ(u), there is

by expectation Γ(u′) candidates in Cϕ(u′) that can be mapped
to u′ to generate matches in ∆(ϕ). ∆(Φ

(2)
u) can be estimated

as |Φ(2)
u |
∏
u′∈Fπ(u) Γ(u′). T (1)

C and T
(2)
C denote the cost of

the computation phase in SE and LIGHT respectively. With
Equation 2 and 3, we derive the following equation to compare
T

(1)
C and T (2)

C .

T
(1)
C − T (2)

C = α
∑
u∈X

w(1)
u (|Φ(1)

u | − |Φ(2)
u |)

= α
∑
u∈X

w(1)
u |Φ(2)

u |(
∏

u′∈Fπ(u)

Γ(u′)− 1).
(5)

Given a partial result ϕ whose next pattern vertex in π
is u, we extend ϕ by mapping u to v ∈ Cϕ(u). v cannot
be mapped if v ∈ ϕ.values. Then, there are at most |ϕ|
candidates in Cϕ(u) that cannot be mapped. Therefore, Γ(u)
can be estimated as max{0, |Cϕ(u)|−|ϕ|} 6 Γ(u) 6 |Cϕ(u)|.
Because the graphs are unlabeled and P is very small, |Cϕ(u)|
can be large but |ϕ| is small. Therefore, Γ(u) is generally
greater than 1. The multiplication over Γ(u) in Equation
5 indicates that the lazy materialization can reduce a large
number of set intersections compared with SE. However,
because the value of Γ depends on the properties of input
graphs as well as the selected enumeration order, we cannot
exactly quantify the differences among T (1)

C and T (2)
C . Instead,

we conduct experiments to evaluate their performance. The
experiment results show that LIGHT can reduce up to 95% set
intersections compared with SE (see Section VIII-B1), which
confirms our analysis.

We cannot ensure that
∏
u′∈Fπ(u) Γ(u′) must be greater

than 1, because there is no guarantee that given any data graph,
|R(Pπi)| is greater than |R(P [Aπ(u)])|, although P [Aπ(u)] is
a connected vertex-induced subgraph of Pπi .

V. MINIMUM SET COVER BASED CANDIDATE SET
COMPUTATION

In this section, we introduce the minimum set cover based
candidate set computation.

A. General Idea

Inspired by the observation in Example I.1, we can compute
the candidate set of a pattern vertex u by utilizing candidate
sets of the vertices before u in π. Specifically, we convert this
problem into the minimum set cover problem as follows.
• Given P and π, suppose that u = π[i + 1] (1 6 i <
n). The universe U is Nπ

+(u). A collection S of sets is
{{u′}|u′ ∈ U}

⋃
{Nπ

+(u′)|Nπ
+(u′) ⊆ Nπ

+(u) where u′

is before u in π }. Identify the smallest sub-collection,
denoted as S′, of S whose union equals U .

We add {{u′}|u′ ∈ U} into S to guarantee that there must
be sub-collections of S whose union can cover U . When
adding Nπ

+(u′) into S, we require that Nπ
+(u′) ⊆ Nπ

+(u) and
u′ is before u in π. This requirement ensures that Cϕ(u) ⊆
Cϕ(u′) and Cϕ(u′) has been obtained when computing Cϕ(u).

Algorithm 3: Minimum Set Cover based Candidate Set
Computation

1 Procedure GenerateOperands(π, P)
2 Set u.K1 and u.K2 as empty for each u ∈ V (P);
3 for i← 2 to n do
4 u← π[i], U ← Nπ+(u), S ← {{u′}|u′ ∈ U};
5 for j ← 1 to i− 1 do
6 u′ ← π[j];
7 if Nπ+(u′) ⊆ Nπ+(u) then S ← S ∪ {Nπ+(u′)};
8 Identify the minimum set cover S′ of S that covers U ;
9 foreach s ∈ S′ do

10 if |s| = 1 then Add u′ in s into u.K1;
11 else Add u′ before u that Nπ+(u′) = s into u.K2;
12 Function ComputeCandidates(u, ϕ)
13 Cϕ(u) = (

⋂
u′∈u.K1

N(ϕ(u′)))
⋂

(
⋂
u′∈u.K2

Cϕ(u′));
14 return Cϕ(u);

After identifying S′, we process the elements s in S′ as
follows: If |s| = 1, then add the pattern vertex in s into a
set K1; otherwise, add u′ before u such that Nπ

+(u′) = s
into K2. If multiple pattern vertices satisfy this condition, we
select one randomly.

If |s| = 1, then the pattern vertex in s must be an anchor
vertex of u, because the construction method of S ensures that
the vertices in the sets of S must be the backward neighbors
of u or that of the pattern vertices before u in π. Therefore,
the vertices in K1 have been mapped to data vertices when
computing the candidate set of u during the enumeration.
Furthermore, the candidate sets of the vertices in K2 have
been generated, because they are positioned before u in π.
Then, we can compute Cϕ(u) by Equation 6.

Cϕ(u) = (
⋂

u′∈K1

N(ϕ(u′)))
⋂

(
⋂

u′∈K2

Cϕ(u′)). (6)

B. Candidate Set Computation

Algorithm 3 presents the minimum set cover based can-
didate set computation method. Given a pattern vertex u,
we call the vertices in u.K1 and u.K2 the operands of u.
GenerateOperands takes π and P as input and generates the
operands of pattern vertices except π[1], because the candidate
set of π[1] is V (G). Lines 12-14 presents the method that
computes Cϕ(u) based on the operands of u. Because the
operands of pattern vertices are determined by the enumera-
tion order, LIGHT invokes GenerateOperands to obtain the
operands of pattern vertices before the enumeration process.
During the enumeration process, LIGHT directly invokes the
ComputeCandidates function to compute the candidate sets.

Example V.1. Following Example IV.1, let us consider u3.
U = Nπ

+(u3) = {u0, u2} and S = {{u0}, {u2}, {u0, u2}}.
We obtain that S′ is {{u0, u2}}. Therefore, u.K1 = ∅ and
u.K2 = {u1}, as Nπ

+(u1) = {u0, u2}. During the enumera-
tion, LIGHT assigns Cϕ1

(u1) to Cϕ2
(u3) as shown in Figure

2b, which reduces 1 set intersection in the search path.

C. Analysis

Given u = π[i] in the loop of lines 3-11 in Algorithm 3, line
8 dominates the cost, because the minimum set cover problem
is NP-hard. There are at most 2(i−1) elements in S. Then, line
8 consumes O(22(i−1)) time. Therefore, the time complexity

of GenerateOperands is O(
∑n
i=2 22(i−1)) = O(4n). As P is

small, GenerateOperands can process it very efficiently.
The number of set intersections in one computation of the

candidate set of u with Algorithm 3, denoted as w(2)
u , can be

calculated as follows.

w(2)
u =

{
0, u = π[1];
|u.K1|+ |u.K2| − 1, u = π[i+ 1] (1 6 i < n).

(7)
Because the operands of pattern vertices are obtained based

on the minimum set cover, we have Proposition V.1.

Proposition V.1. Given P and π, ∀u ∈ π, w(2)
u 6 w

(1)
u .

VI. OPTIMIZING ENUMERATION ORDER

The enumeration order π has an important impact on the
performance of LIGHT. Given P , G, π and σ, the overall cost
of LIGHT includes the cost of the materialization and the cost
of the computation. The order of materializing pattern vertices
in LIGHT follows the sequence of their MAT operations in
σ, which is denoted as π′. Then, the cost of the materialization
can be estimated as

∑n
i=1 |R(Pπ

′

i)|. According to Proposition
IV.2, |Φ(2)

u | is at worst equal to |R(P [Aπ(u)])|. Therefore, we
estimate |Φ(2)

u | as |R(P [Aπ(u)])|. Then, the overall cost can
be estimated by Equation 8.

T = α
∑
u∈π

w(2)
u |R(P [Aπ(u)])|+

n∑
i=1

|R(Pπ
′

i)|. (8)

In order to compute Equation 8, we need to estimate the
value of its parameters. The value of w(2)

u can be computed by
Equation 7. Next, a challenging problem is to estimate |R(P ′)|
where P ′ is a subgraph of P . This problem is also very
important in generating an efficient join plan in distributed
algorithms [3], [12], [13], [19], [21]. Instead of inventing a new
method, we utilize the estimation approach proposed by SEED
[13], which is shown to be effective in real-world data graphs.
Specifically, this method calculates an expand factor for each
edge of P ′ by simulating the construction of the partial results
in R(P ′) through extending one edge at each step. Finally, we
estimate the value of α. The cost of set intersections depends
on the sizes of input sets. Because pattern vertices can be
mapped to different data vertices, we address this problem by
considering the relationship between α and the expand factors.
As the expand factor of an edge is at most the expected degree
of the data vertices mapped to the incident vertices of the
edge, we simply estimate the value of α as the maximum
value of all expand factors. We take the maximum value to
give a higher weight to the cost of the computation than that
of the materialization, because the cost of a set intersection is
much higher than mapping a pattern vertex to a data vertex in
practice.

As P is very small, LIGHT simply enumerates all the
connected orders of V (P) and selects the order with the
minimum value of Equation 8 as the enumeration order.
Furthermore, we use partial orders to break ties by prioritizing

the order that puts the vertices constrained by partial orders
before other vertices. Additionally, we reduce the number of
orders by the symmetry breaking: given ui, uj ∈ V (P), if
ui < uj , then ui must be positioned before uj in π.

VII. PARALLEL IMPLEMENTATION

Because of the large search space in subgraph enumeration,
we parallelize LIGHT with SIMD and SMT in modern CPUs
to improve its performance.

A. SIMD Parallelization

The min property of the set intersection can be achieved
by storing sets as hash tables and scanning the smallest set
to check the other sets. However, hash tables incur random
access patterns in practice, which is costly in memory hierar-
chies [25]. Another alternative is to implement pair-wise set
intersections with SIMD [1], [14]. In this paper, we adopt
a hybrid set intersection algorithm implemented with SIMD,
which is shown to be effective in graph processing [1].

Algorithm 4: Set Intersection Algorithm
1 Function Hybrid(S1, S2)
2 if |S1|/|S2| < δ and |S2|/|S1| < δ then return Merge(S1, S2);
3 else return Galloping(S1, S2);

Algorithm 4 presents the Hybrid algorithm that takes two
sorted sets as input and outputs their intersection. If the
sizes of S1 and S2 are similar, Hybrid invokes the Merge
function that loops over S1 and S2 to find their common
elements, whose time complexity is O(|S1| + |S2|). Merge
performs poorly when the sizes of the two sets differ greatly,
which we call the cardinality skew. We use the Galloping
algorithm [1] to handle this skew. Suppose that |S1| < |S2|.
The time complexity of Galloping is O(|S1|× log(|S2|)). δ is
the threshold for the size ratio, which is configured as 50 in
our experiments based on a previous performance study [14].

B. SMT Parallelization

To utilize SMT, we implement LIGHT with the parallel
DFS paradigm [20]. Because partial results can be expanded
independently to find the matches containing them, we take
the partial results as the parallel tasks and each worker (i.e.,
thread) expands the assigned partial results in DFS indepen-
dently. In a shared-memory environment, we keep the load
balance by the sender-initiated work stealing strategy with
a global concurrent queue for communication. Specifically,
workers monitor the global concurrent queue and the status
of the other workers. If a busy worker finds that there are
idle workers and the queue is empty, then it sends part of
its tasks to the queue and wakes up the idle workers to
fetch the tasks. With this approach, idle workers are able
to almost immediately acquire tasks by the donation of busy
workers [2]. Compared with the parallel BFS approach, our
parallel DFS implementation does not maintain an exponential
number of intermediate results, so our algorithm can execute
on a single machine with the limited memory space. Suppose
that there are k workers. Each worker maintains a partial

result and keeps a candidate set for each pattern vertex.
LIGHT consumes at most O(k × n × dmax) memory where
dmax = maxv∈V (G) d(v).

VIII. EXPERIMENTS

In this section, we evaluate the effectiveness of the tech-
niques in LIGHT and compare it with existing algorithms.

A. Experimental Setup

Algorithms Under Study. We compare the following un-
labeled subgraph enumeration algorithms in our experiments.
• LIGHT: the algorithm proposed in this paper.
• DUALSIM [11]: the state-of-the-art parallel algorithm

working on a single machine.
• SEED [13]: the state-of-the-art distributed algorithm

working in MapReduce with clique-star as join units.
• CRYSTAL [19]: the state-of-the-art distributed algorithm

working in MapReduce with core-crystal as join units.
We acknowledge that comparing a shared-memory parallel

algorithm with distributed algorithms is not exactly apple-to-
apple, and that MapReduce-based solutions have goals such as
scalability, ease of programming, and reliability than merely
latency. Nevertheless, we compare with them with a focus on
the space cost of the BFS approach adopted by both SEED
and CRYSTAL.

Furthermore, we evaluate the following algorithms to exam-
ine the effectiveness of the individual techniques in LIGHT.
The first group is to evaluate the strategies that reduce re-
dundant computation. In particular, we compare with Emp-
tyHeaded [1] and CFL [5] to study whether and how the
join plan optimizer in the relational engine and the pruning
strategies as well as the enumeration order optimization in
labeled subgraph enumeration can benefit unlabeled subgraph
enumeration. In order to exclude the effect of the paralleliza-
tion, these algorithms including ours execute in serial without
SIMD. The algorithms under comparison are as follows.
• EH: EmptyHeaded [1], a relational engine for graph

processing that answers queries with WCOJ algorithms.
• CFL [5]: the state-of-the-art labeled subgraph enumera-

tion algorithm.
• SE: Algorithm 1, which is the baseline algorithm.
• LM: LIGHT with the Lazy Materialization strategy only.
• MSC: LIGHT with the Minimum Set Cover based can-

didate set computation method only.
• LIGHT: LIGHT with both the lazy materialization and

the minimum set cover based candidate set computation.
The second group is to examine the effectiveness of paral-

lelization. We evaluate the SIMD parallelization by varying
the set intersection method in LIGHT. We use AVX2, a
SIMD instruction set that can manipulate 256-bit data in one
instruction, to implement the set intersection methods. These
algorithms execute in one thread. Next, we vary the number
of threads to evaluate the SMT parallelization. The algorithms
under comparison are as follows.
• Merge: LIGHT with the Merge set intersection.

• MergeAVX2: LIGHT with the Merge set intersection
implemented with AVX2.

• Hybrid: LIGHT with the Hybrid set intersection.
• HybridAVX2: LIGHT with the Hybrid set intersection

implemented with AVX2.
Additionally, we test a naive distributed version of LIGHT

by storing the entire data graph on each machine and dividing
the search space by partitioning Cϕ(π[1]) (i.e., V (G)) evenly
on each machine. However, the speedup is very limited be-
cause of the load imbalance among machines, as our naive
distributed solution is missing (1) the estimation of workload
given a partition of the candidate set and (2) an efficient
dynamic load balancing strategy in the shared-nothing environ-
ment. We also set up Hadoop in the pseudo distributed mode
on a single machine and execute both SEED and CRYSTAL
on this machine. Both SEED and CRYSTAL run much slower
than LIGHT under this configuration, because (1) Both SEED
and CRYSTAL have intensive disk I/O operations to read/write
intermediate results; and (2) The novel techniques in SEED
and CRYSTAL, such as the graph partitioning and the bloom
filtering, for the shared-nothing environment are unnecessary
and cause extra overhead on the single machine. We omit the
results for brevity.

Experimental Environment. We implement all our al-
gorithms in C++. We obtain the binary of DUALSIM and
the source code of CFL, which are both implemented in
C++. We extract the generated C++ code of the queries from
EmptyHeaded, and modify it to support the symmetry breaking
and require pattern vertices to map to distinct data vertices
in a result. Except DUALSIM, which is binary executable,
we compile the source code of all other algorithms with icpc
16.0.0. We perform the experiments on these algorithms on a
machine equipped with 20 cores (2 Intel Xeon E5-2650 v3 @
2.30GHz CPUs), 64GB RAM and 1TB HDD. We configure
the memory buffer in DUALSIM as 32GB so that DUALSIM
conducts the enumeration in memory.

We set up Apache Hadoop 2.7.4 on a cluster with 12
machines including 1 master and 11 slaves. Each node is
equipped with 16 cores (2 Intel Xeon E5-2630 v3 @ 2.40GHz
CPUs), 64GB RAM and 1TB HDD. The HDFS has around
6TB available space in total with the replication factor as two.
Each slave has at least 512GB free space. We allocate a JVM
heap space of 3584MB for each mapper and 5120MB for each
reducer, and we allow at most ten mappers/reducers to run
concurrently in each machine. The I/O sort size is 512MB.
We obtain the JAVA code of SEED and CRYSTAL from their
authors and execute them on this cluster.

Data Graphs. We select 6 real-world datasets that are
widely used in previous work [11]–[13], [19], [21]. lj, ot
and fs are downloaded from SNAP (http://snap.stanford.edu),
yt is downloaded from KONECT (http://konect.uni-
koblenz.de), and eu and uk are downloaded from WEB
(http://law.di.unimi.it). As shown in Table II, N scales from
less than one million to tens of millions and M scales from
millions to billions. The graphs stored in the CSR format
consume a small amount of memory space.

0
u

1
u

2
u

3
u

0 1 0 2
,u u u u 

0 3 1 3
,u u u u 

(a) P1.

0
u

1
u

2
u

3
u

0 2
u u

1 3
u u

(b) P2.

0
u

1
u

2
u

3
u

0 1 2 3
u u u u  

(c) P3.

0
u

1
u

2
u

3
u

4
u

0 1
u u

(d) P4.

0
u

1
u

2
u

3
u

4
u

5
u

2 4
u u

(e) P5.

0
u

1
u

2
u

3
u

4
u

0 1
u u

2 3
u u

(f) P6.

0
u

1
u

2
u

3
u

4
u

0 1 2 3 4
u u u u u   

(g) P7.
Fig. 3: Pattern graphs.

TABLE II: Properties of real-world datasets.
Dataset Name N (million) M (million) Memory (GB)
youtube yt 3.22 9.38 0.09
eu-2005 eu 0.86 19.24 0.15

live-journal lj 4.85 68.48 0.53
com-orkut ot 3.07 117.19 0.89
uk-2002 uk 18.52 298.11 2.30
friendster fs 65.61 1,806.07 13.71

Pattern Graphs. Figure 3 shows the pattern graphs used in
our experiments which are the same as those in SEED [13]. n
varies from 4 to 6, and m varies from 4 to 10. Partial orders
for the symmetry breaking are listed under the pattern graphs.

Metrics. The execution time reported in our experiments
is the elapsed time on the enumeration. The time limit for
processing a pattern graph is 24 hours. In our bar charts of the
execution time, bars labeled INF are the algorithms that run out
of time limit (OOT), and missing bars are the algorithms that
run out of the disk/memory space (OOS). Similar to previous
work [11]–[13], [21], all algorithms under study enumerate
the matches without storing them into the file system.

B. Evaluation of Individual Techniques

To obtain sufficient results for comparison, we extend the
time limit for each query to 72 hours in this subsection. For
brevity, we present the experiment results of P2, P4 and P6

on yt and lj.
1) Reducing Redundant Computation: Before the compari-

son, we first briefly introduce the general idea of EH and CFL.
EH is a generic graph processing engine that can answer a
variety of graph queries, such as pattern queries, PageRank and
Single-Source Shortest Paths. In particular, given P and G, EH
first divides P into small components (i.e., subgraphs), then
finds the matches of each component with a similar logic to
SE, and finally joins the matches of the components. CFL par-
titions the search procedure into two phases: the preprocessing
and the enumeration. The preprocessing builds a light-weight
index, which contains the data vertices that can be mapped to
the pattern vertices, and then generates an enumeration order
based on the index. The enumeration procedure recursively
finds all results based on the index, which is also similar to
SE. In the experiments, the enumeration orders of SE, LM,
MSC and LIGHT are the same, which are denoted as π1. We
denote the enumeration order of CFL and EH as π2 and π3 re-
spectively. Specifically, π1(P2) = π2(P2) = (u0, u2, u1, u3),
π1(P4) = (u0, u1, u4, u2, u3), π2(P4) = (u0, u2, u4, u1, u3),
and π1(P6) = π2(P6) = (u0, u1, u2, u3, u4). EH gener-
ates π3(P2) = (u1, u3, u0, u2). For P4, EH divides it into
two vertex-induced subgraphs P ′4 and P ′′4 where V (P ′4) =
{u0, u1, u3, u4} and V (P ′′4) = {u0, u2, u3}, and finds R(P ′4)
and R(P ′′4) with π3(P ′4) = (u0, u3, u4, u1) and π3(P ′′4) =
(u0, u3, u2). For P6, EH also obtains two vertex-induced
subgraphs P ′6 and P ′′6 where V (P ′6) = {u0, u1, u2, u3} and

V (P ′′6) = {u0, u1, u4}, and finds R(P ′6) and R(P ′′6) with
π3(P ′6) = (u0, u1, u2, u3) and π3(P ′′6) = (u0, u1, u4) respec-
tively. Figures 4 and 5 illustrate the experiment results of the
execution time and the number of set intersections of these
algorithms. If a query cannot be completed due to OOT or
OOS, then there is no experiment result of the number of set
intersections of this query.

We first compare SE with EH and CFL. EH spends more
time on P2 on yt than SE, because the enumeration order of
EH is not connected, which results in much more number of
set intersections than SE as shown in Figure 5a. The number
of set intersections of EH is around 104 times more than that
of SE. The execution time of EH is only 60 times longer
than that of SE, because yt is very sparse, in which over 83%
vertices have degrees less than 10. Then, a large number of
set intersections is among small sets, which accounts for a
small portion of the execution time. EH fails on P2 on lj due
to OOT. In order to find R(P4), EH has to store R(P ′4) and
R(P ′′4) in memory before joining them. As a result, EH fails
on P4 on both yt and lj due to running out of memory. For the
same reason, EH fails on P6. CFL and SE generate the same
enumeration order on both P2 and P6 and conduct the same
number of set intersections. However, CFL spends less time
than SE on P2 on yt, but more time on the other three cases,
because CFL and SE use different set intersection methods.
Specifically, CFL computes set intersections by looping over
the smaller set to check whether its elements exist in the other
one, which is efficient to cope with the cardinality skew. In
contrast, the Merge method in SE works well when the sets
have a similar size. P2 on yt has much more portion of the
number of set intersections on the sets that are cardinality
skew than other three cases. CFL fails on P4 on both yt
and lj due to its enumeration order. The experiment results
suggest that SE generates more effective enumeration orders
than EH and CFL, and the filtering methods (e.g., the light-
weight index) designed for labeled subgraph enumeration are
often ineffective on unlabeled graphs.

Next, we compare SE with the variants of LIGHT. By
the lazy materialization, LM reduces a large number of set
intersections compared with SE and runs much faster than
SE. MSC improves the performance of SE on P2 and P6 as
well, because the number of set intersections along a search
path is reduced from 2 to 1 on P2, and 4 to 2 on P6. As
a result, the total number of set intersections is significantly
reduced. Furthermore, the number of set intersections of MSC
is less than that of LM on P2 and P6, because MSC reduces
the number of set intersections in one computation of the
candidate set of u3 in P2 and u4 in P6 from 1 to 0. However,
for P4, MSC cannot reduce the number of set intersections.

P2 P4 P6

101

102

103

104

105

106

INF
E
x
e
cu

ti
o
n
 T

im
e
 (

s)

EH CFL SE LM MSC LIGHT

(a) yt
P2 P4 P6

101

102

103

104

105

106

INF

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

EH CFL SE LM MSC LIGHT

(b) lj
Fig. 4: Execution time comparison.

P2 P4 P6
106

107

108

109

1010

1011

1012

1013

#
S
e
t

In
te

rs
e
ct

io
n
s

EH CFL SE LM MSC LIGHT

(a) yt
P2 P4 P6

107

108

109

1010

1011

1012

#
S
e
t

In
te

rs
e
ct

io
n
s

EH CFL SE LM MSC LIGHT

(b) lj
Fig. 5: Comparison of number of set interesections.

Consequently, the performance of MSC is similar to SE on P4,
but much slower than LM. The experiment results demonstrate
the effectiveness of the lazy materialization and the mini-
mum set cover based candidate set computation respectively.
Furthermore, the two techniques are orthogonal, because the
lazy materialization aims to reduce the number of times of
computing the candidate sets, whereas the minimum set cover
based candidate set computation tries to reduce the number of
set intersections in a computation of the candidate set.

2) Parallelization: As shown in Figure 6, Hybrid is faster
than Merge in all cases. Hybrid runs 1.43-4.62X faster than
Merge on yt, whereas it only achieves a speedup of 1.01-
1.06X on lj, because the number of the Galloping search
accounts for a small portion of the number of set intersec-
tions on lj as shown in Table III. With SIMD, HybridAVX2
and MergeAVX2 gain a speedup of 1.2-1.8X and 1.2-3.2X.
Overall, HybridAVX2 runs 1.2-6.5X times faster than Merge
in the six test cases.

P2 P4 P6
100

101

102

103

104

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Merge

MergeAVX2

Hybird

HybridAVX2

(a) yt
P2 P4 P6

101

102

103

104

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Merge

MergeAVX2

Hybird

HybridAVX2

(b) lj
Fig. 6: Execution time with different set intersection methods.

TABLE III: Percentage of the Galloping search.
Dataset yt lj
Pattern P2 P4 P6 P2 P4 P6

Percentage 34.8% 35.9% 8.1% 1.1% 2.1% 0.7%

Figure 7 presents the execution time of LIGHT, which
adopts the Hybird set intersection implemented by AVX2, with
the number of threads varied from 1 to 64. When the number
of threads varies from 1 to 16, LIGHT achieves almost linear
speedup, but the speedup becomes limited when scaling the
number of threads up to 32 and 64. This difference is because
there are only 20 physical cores in the machine. Generally,
LIGHT obtains more speedup when the execution time is long,
because the benefit of the multi-threading is small compared
with its overhead when the execution time is very short. For

example, LIGHT with 64 threads achieves a speedup of around
15.5X on P2 on yt, and the speedup is up to 25X on P4 on yt
(A speedup of more than 20X on 20 physical cores is achieved
because of the hyper threading in modern CPUs). Therefore,
in our experiments, we execute LIGHT with 64 threads to
fully utilize the multi-core parallelism.

1 2 4 8 16 32 64
#Threads

100

101

102

103

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

P2

P4

P6

(a) yt

1 2 4 8 16 32 64
#Threads

100

101

102

103

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

P2

P4

P6

(b) lj
Fig. 7: Execution time with the number of threads varied.
3) Summary: Table IV summarizes the performance im-

provement with the techniques in this paper. TSE is the
execution time of SE. TLIGHT is the execution time of
LIGHT without any parallelization, while TLIGHT+P is that
with parallelization (Hybrid implemented with AVX2 and 64
threads). We parallelize SE with the same method as LIGHT,
and this parallelization greatly improves the performance of
SE. Nevertheless, on complex query patterns, SE+P still takes
a long time. By adopting the strategies that reduce redundant
computation, LIGHT without any parallelization significantly
outperforms SE as well as SE+P on P4 and P6. In total,
LIGHT+P is over three orders of magnitude faster than SE
(TSE/TLIGHT+P).

TABLE IV: Comparison with SE (seconds).
Dataset yt lj
Pattern P2 P4 P6 P2 P4 P6

TSE 645 176,181 4,448 677 232,800 34,090
TSE+P 22 4,034 115 15.9 6,949 1,425
TLIGHT 31 3,309 43 26 3,497 285
TLIGHT+P 0.3 56 0.9 0.9 80 8.7

Speedup 2,150X 3,146X 4,942X 752X 2,910X 3,918X

4) Memory Consumption: For brevity, Table V only lists
the memory consumption of the candidate sets on P5 with 64
threads, because P5 has more vertices than the other pattern
graphs and our experiments execute LIGHT with 64 threads
at most. The memory cost of data graphs has been presented
in Table II. As shown in Table V, the candidate sets consume
very small memory space, which shows that the parallel DFS
method has a good space complexity.

TABLE V: Memory consumption of candidate sets on P5.
Dataset yt eu lj ot uk fs

Memory (GB) 0.123 0.090 0.022 0.048 0.239 0.008

C. Overall Performance Comparison

We compare LIGHT with the state of the art - DUALSIM on
a single machine and both SEED and CRYSTAL on a cluster
of 12 nodes. We keep in mind the performance overhead of the
MapReduce-based distributed algorithms, and focus on their
space cost.

As SEED and CRYSTAL preprocess data graphs quickly,
we do not report the preprocessing time. An exception is

yt eu lj ot uk fs
100

101

102

103

104

INF
E
x
e
cu

ti
o
n
 T

im
e
 (

s)
DUALSIM CRYSTAL SEED LIGHT

(a) P1.

yt eu lj ot uk fs
10-1

100

101

102

103

104

INF

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

DUALSIM CRYSTAL SEED LIGHT

(b) P2.

yt eu lj ot uk fs
10-1

100

101

102

103

104

INF

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

DUALSIM CRYSTAL SEED LIGHT

(c) P3.

yt eu lj ot uk fs
100

101

102

103

104

INF

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

DUALSIM CRYSTAL SEED LIGHT

(d) P4.

yt eu lj ot uk fs
100

101

102

103

104

INF

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

DUALSIM CRYSTAL SEED LIGHT

(e) P5.

yt eu lj ot uk fs
10-1

100

101

102

103

104

INF

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

DUALSIM CRYSTAL SEED LIGHT

(f) P6.

yt eu lj ot uk fs
10-1

100

101

102

103

104

INF

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

DUALSIM CRYSTAL SEED LIGHT

(g) P7.

Fig. 8: The execution time of LIGHT, DUALSIM, SEED and CRYSTAL on the real-world datasets.

that CRYSTAL fails to preprocess fs due to running out of
the disk space. As a result, we cannot obtain any execution
time of CRYSTAL on fs. Figure 8 presents the execution time
excluding the preprocessing time. DUALSIM fails due to OOT
because of its slow in-memory enumeration. In contrast, SEED
and CRYSTAL generally fail due to OOS, which is caused by
the large number of intermediate results. Specifically, SEED
fails to process P5 on eu, since the reducers run out of memory
space. CRYSTAL fails on P5 on uk due to OOT. The other
failure cases of SEED and CRYSTAL are caused by running
out of the disk space. LIGHT is the only algorithm that finishes
all the 42 test cases (7 pattern graphs × 6 data graphs),
whereas DUALSIM, SEED and CRYSTAL fail in 16, 8 and
12 cases respectively. As shown in Figure 8, LIGHT can
outperform DUALSIM by up to three orders of magnitude.
Furthermore, LIGHT running on a single machine is up to
two orders of magnitude faster than both SEED and CRYSTAL
running on a cluster of 12 machines.

IX. CONCLUSION
In this paper, we propose an efficient parallel subgraph

enumeration algorithm LIGHT for a single machine. To reduce
redundant computation, we propose the lazy materialization
and the minimum set cover based candidate set computation.
Moreover, we parallelize LIGHT with SIMD and SMT to fully
utilize the parallel computation capabilities in modern CPUs.
Detailed experimental results show that LIGHT outperforms
the state-of-the-art algorithms by orders of magnitude.

X. ACKNOWLEDGMENTS

This work was partly supported by grants 16206414 from
the Hong Kong Research Grants Council and MRA11EG01
from Microsoft.

REFERENCES

[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré.
Emptyheaded: A relational engine for graph processing. In TODS, 2017.

[2] U. A. Acar, A. Charguéraud, and M. Rainey. Scheduling parallel
programs by work stealing with private deques. In SIGPLAN, 2013.

[3] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating subgraph
instances using map-reduce. In ICDE, 2013.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for
relational joins. In FOCS, 2008.

[5] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph
matching by postponing cartesian products. In SIGMOD, 2016.

[6] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
In SIAM Journal on Computing, 1985.

[7] J. A. Grochow and M. Kellis. Network motif discovery using subgraph
enumeration and symmetry-breaking. In Annual International Confer-
ence on Research in Computational Molecular Biology, 2007.

[8] M. Grohe and D. Marx. Constraint solving via fractional edge covers.
In ACM-SIAM symposium on Discrete algorithm, 2006.

[9] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and robust
subgraph isomorphism search in large graph databases. In SIGMOD,
2013.

[10] S. R. Kairam, D. J. Wang, and J. Leskovec. The life and death of online
groups: Predicting group growth and longevity. In ACM international
conference on Web search and data mining, 2012.

[11] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H.
Jarrah. Dualsim: Parallel subgraph enumeration in a massive graph on
a single machine. In SIGMOD, 2016.

[12] L. Lai, L. Qin, X. Lin, and L. Chang. Scalable subgraph enumeration
in mapreduce. In PVLDB, 2015.

[13] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang. Scalable
distributed subgraph enumeration. In PVLDB, 2016.

[14] D. Lemire, L. Boytsov, and N. Kurz. Simd compression and the
intersection of sorted integers. In Software: Practice and Experience,
2016.

[15] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Capturing
topology in graph pattern matching. In TODS, 2014.

[16] H. Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and
open problems. arXiv, 2018.

[17] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join
algorithms. In PODS, 2012.

[18] H.-M. Park, S.-H. Myaeng, and U. Kang. Pte: Enumerating trillion
triangles on distributed systems. In SIGKDD, 2016.

[19] M. Qiao, H. Zhang, and H. Cheng. Subgraph matching: on compression
and computation. In PVLDB, 2017.

[20] V. N. Rao and V. Kumar. Parallel depth first search. part i. implemen-
tation. In International Journal of Parallel Programming, 1987.

[21] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu. Parallel subgraph
listing in a large-scale graph. In SIGMOD, 2014.

[22] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt. Efficient graphlet kernels for large graph comparison. In Artificial
Intelligence and Statistics, 2009.

[23] J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Map-
ping the empirical and extremal geography of large graph collections.
In WWW, 2013.

[24] J. R. Ullmann. An algorithm for subgraph isomorphism. In JACM,
1976.

[25] T. L. Veldhuizen. Leapfrog triejoin: a simple, worst-case optimal join
algorithm. In ICDT, 2014.

[26] S. Wernicke. Efficient detection of network motifs. In IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2006.

