Efficient Parallel Subgraph Enumeration on a Single Machine

Shixuan Sun, Yulin Che, Lipeng Wang, and Qiong Luo*

The Hong Kong University of Science and Technology
Outline

- Background
 - Basic Subgraph Enumeration Algorithm
 - Lazy Materialization Subgraph Enumeration
- Evaluation
- Conclusions
Subgraph Isomorphism

Given unlabeled graphs $g = (V, E)$ and $g' = (V', E')$, a subgraph isomorphism from g to g' is an injective function $\varphi: V \rightarrow V'$ such that $\forall e(u, u') \in E, e(\varphi(u), \varphi(u')) \in E'$.
Problem Definition

Given a data graph G and a pattern graph P, subgraph enumeration finds all subgraphs in G that are isomorphic to P.
Existing Algorithms on a Single Machine

- DUALSIM partitions data graphs that cannot fit in memory.
- EmptyHeaded utilizes the worst-case optimal join to enumerate subgraphs.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Environment</th>
<th>Year Published</th>
</tr>
</thead>
</table>
Existing Distributed Algorithms

Distributed algorithms adopt the parallel join method.
1. Decompose P into a collection of small components.
2. Join the matches of the components in parallel.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Distributed Environment</th>
<th>Year Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrati [1]</td>
<td>MapReduce</td>
<td>ICDE 2013</td>
</tr>
<tr>
<td>BiGJoin [6]</td>
<td>Timely Dataflow</td>
<td>VLDB 2018</td>
</tr>
</tbody>
</table>
Outline

- Background
- Basic Subgraph Enumeration Algorithm
- Lazy Materialization Subgraph Enumeration
- Evaluation
- Conclusions
Basic Subgraph Enumeration Algorithm

Input: a data graph G and a pattern graph P.

Output: all subgraphs in G that are isomorphic to P.

1. Generate an enumeration order π, which is a permutation of pattern vertices.
2. Enumerate all solutions by recursively extending partial results along π.
Example of SE

Pattern Graph P.

Data Graph G.

Search Tree of SE.

Enumeration Order

Partial Result
Example of SE

Step 1.

Pattern Graph P.

Data Graph G.

Search Tree of SE.

Computation

$C_{\psi}(u_i) = N(v_0) \cap N(v_{101}) = \{v_{1-100}\}$

Materialization

Expand a Partial Result.

Step 2.
We find that there is a large amount of redundant computation in the enumeration.
Observation One

Pattern Graph P.

Data Graph G.

Search Tree of SE.

The same set intersection $N(v_0) \cap N(v_{101})$ is repeated in the computation of partial results in the dashed rectangle for u_3.

Observation Two

Pattern Graph P.

Data Graph G.

Search Path of SE.

Given partial results φ_1 and φ_2, the same set intersection $N(v_0) \cap N(v_{101})$ is repeated in the computation of candidates of u_1 and u_3.
Outline

- Background
- Basic Subgraph Enumeration Algorithm
- Lazy Materialization Subgraph Enumeration
- Evaluation
- Conclusions
Lazy Materialization

We propose the lazy materialization subgraph enumeration algorithm, called **LIGHT**.

- Separate the computation and the materialization.
- Keep the order of the computation unchanged.
- Delay the materialization until some computation requires it.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

u_0

u_2

u_1

u_3
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

Operation Order of SE.

u_0, u_1, u_2, u_3, v_0, v_1, v_2, v_9, v_{10}, v_{100}, v_{101}, v_{99}, v_{100}.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

Operation Order of SE.

Operation Order of LIGHT.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

Operation Order of SE.

Operation Order of LIGHT.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

Operation Order of SE.

Operation Order of LIGHT.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

Operation Order of SE.

Operation Order of LIGHT.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

Operation Order of SE.

Operation Order of LIGHT.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

Operation Order of SE.

Operation Order of LIGHT.
Example of Lazy Materialization

Pattern Graph \(P \).

Data Graph \(G \).

Enumeration Order \(\pi \).

Operation Order of SE.

Operation Order of LIGHT.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Enumeration Order π.

Operation Order of SE.

Operation Order of LIGHT.
Example of Lazy Materialization

Pattern Graph P.

Data Graph G.

Search Tree of SE.

Search Tree of LIGHT.
MSC based Candidate Sets Computation

Compute the candidate set of \(u \in \pi \) by utilizing candidate sets of \(u' \in M(u) \) in \(\pi \).

- Convert it to the minimum set cover (MSC) problem:

Input: \(U = N_+^\pi (u), S = \{u' \mid u' \in U\} \cup \{N_+^\pi (u') \mid N_+^\pi (u') \subseteq N_+^\pi (u) \land u' \in M(u)\} \).

Output: The smallest sub-collection \(S' \) of \(S \) whose union equals \(U \).

Notation:

1. The backward neighbors \(N_+^\pi (u) \) of \(u \) contains the neighbors of \(u \) positioned before \(u \) in \(\pi \).
2. \(M(u) \) contains all pattern vertices before \(u \) in \(\pi \).
Example of MSC

Pattern Graph P.

Data Graph G.

MSC Input:

$U = \{u_0, u_2\}$

$S = \{\{u_0\}, \{u_2\}, \{u_0, u_2\}\}$

MSC Output:

$S' = \{\{u_0, u_2\}\}$

$C_\varphi(u_3) = C_\varphi(u_1)$

Compute Candidate Set of u_3.

$N^\pi_+(u_3) = \{u_0, u_2\}$

$M(u_3) = \{u_0, u_1, u_2\}$

Enumeration Order π.
Example of MSC

Pattern Graph P.

Data Graph G.

Search Path of SE.

Search Path of LIGHT.
Parallel Implementation

Utilize both vector registers and multiple cores in modern CPUs.

- Parallelize set intersections with SIMD (Single-Instruction-Multiple-Data) instructions.
- Parallelize the exploration of the search tree with multi-threading.
Outline

- Background
- Basic Subgraph Enumeration Algorithm
- Lazy Materialization Subgraph Enumeration
- Evaluation
- Conclusions
Datasets

Real-world Datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Name</th>
<th>N (million)</th>
<th>M (million)</th>
<th>Memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>youtube</td>
<td>yt</td>
<td>3.22</td>
<td>9.38</td>
<td>0.09</td>
</tr>
<tr>
<td>eu-2005</td>
<td>eu</td>
<td>0.86</td>
<td>19.24</td>
<td>0.15</td>
</tr>
<tr>
<td>live-journal</td>
<td>lj</td>
<td>4.85</td>
<td>68.48</td>
<td>0.53</td>
</tr>
<tr>
<td>com-orkut</td>
<td>ot</td>
<td>3.07</td>
<td>117.19</td>
<td>0.89</td>
</tr>
<tr>
<td>uk-2002</td>
<td>uk</td>
<td>18.52</td>
<td>298.11</td>
<td>2.30</td>
</tr>
<tr>
<td>friendster</td>
<td>fs</td>
<td>65.61</td>
<td>1,806.07</td>
<td>13.71</td>
</tr>
</tbody>
</table>

Pattern Graphs.

(a) P_1. (b) P_2. (c) P_3. (d) P_4. (e) P_5. (f) P_6. (g) P_7.
Experimental Environment.

- Implemented in C++ and compiled with icpc 16.0.0.
- A machine equipped with 20 cores (2 Intel Xeon E5-2650 v3 @ 2.30GHz CPUs), 64GB RAM and 1TB HDD.
- Use the AVX2 (256-bit) instruction set and execute with 64 threads.
Comparison with SE

- T_{SE} and T_{LIGHT} are the serial execution time of SE and LIGHT respectively.
- T_{SE+P} and $T_{LIGHT+P}$ are the parallel execution time of SE and LIGHT respectively.
- Overall Speedup $= \frac{T_{SE}}{T_{LIGHT+P}}$.

<table>
<thead>
<tr>
<th>Dataset Pattern</th>
<th>yt</th>
<th>lj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset Pattern</td>
<td>P_2</td>
<td>P_4</td>
</tr>
<tr>
<td>T_{SE}</td>
<td>645</td>
<td>176,181</td>
</tr>
<tr>
<td>T_{SE+P}</td>
<td>22</td>
<td>4,034</td>
</tr>
<tr>
<td>T_{LIGHT}</td>
<td>31</td>
<td>3,309</td>
</tr>
<tr>
<td>$T_{LIGHT+P}$</td>
<td>0.3</td>
<td>56</td>
</tr>
<tr>
<td>Speedup</td>
<td>2,150X</td>
<td>3,146X</td>
</tr>
</tbody>
</table>
Conclusions

We propose an efficient parallel subgraph enumeration algorithm LIGHT for a single machine.

- Reduce the redundant computation by the lazy materialization and the MSC based candidate sets computation.
- Parallelize LIGHT with both SIMD and multi-threading to fully utilize the parallel computation capabilities in modern CPUs.
Selected References

Thanks.

Q&A
Automorphism

An automorphism of P is a match from P to itself. Because of the automorphisms, a subgraph in G isomorphic to P can result in duplicate matches from P to G.
Automorphism

An automorphism of P is a match from P to itself. Because of the automorphisms, a subgraph in G isomorphic to P can result in duplicate matches from P to G.

\begin{itemize}
 \item Pattern Graph P.
 \item Data Graph G.
\end{itemize}
Automorphism

An automorphism of P is a match from P to itself. Because of the automorphisms, a subgraph in G isomorphic to P can result in duplicate matches from P to G.

There is only 1 subgraph in G isomorphic to P, while we can find 6 matches from P to G.
Symmetry Breaking

In order to eliminate the duplicate matches, symmetry breaking assigns order $<$ to pattern vertices, and requires the matches ϕ to satisfy that given $u, u' \in V(P)$, if $u < u'$, then $\phi(u) < \phi(u')$.

The orders of P is $u_0 < u_1 < u_2$. There is only one match from P to G that satisfies the constraint of the symmetry breaking, which is $\{(u_0, v_0), (u_1, v_1), (u_2, v_2)\}$.
Problem Definition

Given a data graph G and a pattern graph P, subgraph enumeration finds subgraphs in G that are isomorphic to P.

For the ease of analysis, we assume that there is only one automorphism. Then, the problem is equivalent to finding all matches from P to G.
Basic Subgraph Enumeration Algorithm

Algorithm 1: SE Algorithm

Input: a pattern graph P and a data graph G
Output: all matches from P to G

1 begin
2 \[\pi \leftarrow \text{compute a connected enumeration order of } V(P); \]
3 \[i \leftarrow 1, \varphi \leftarrow \{\}; \]
4 foreach $v \in V(G)$ do
5 \[\text{Add } (\pi[i], v) \text{ to } \varphi; \]
6 \[\text{Enumerate } (\pi, \varphi, i + 1); \]
7 \[\text{Remove } (\pi[i], v) \text{ from } \varphi; \]
8 Procedure Enumerate (π, φ, i)
9 \[\text{if } i = |\pi| + 1 \text{ then Output } \varphi, \text{ return;} \]
10 \[/* \text{The computation phase.} */ \]
11 \[C_{\varphi}(\pi[i]) \leftarrow \text{ComputeCandidates}(\pi[i], \varphi); \]
12 \[/* \text{The materialization phase.} */ \]
13 foreach $v \in C_{\varphi}(\pi[i])$ do
14 \[\text{if } v \notin \varphi.values \text{ then Same as Lines 5-7;} \]
15 Function ComputeCandidates (u, φ)
16 \[C_{\varphi}(u) \leftarrow \bigcap_{u' \in N_{\overline{P}}(u)} N(\varphi(u')); \]
17 return $C_{\varphi}(u)$;
Basic Subgraph Enumeration Algorithm

Algorithm 1: SE Algorithm

Input: a pattern graph \(P \) and a data graph \(G \)
Output: all matches from \(P \) to \(G \)

begin
\begin{enumerate}
\item \(\pi \leftarrow \text{compute a connected enumeration order of} \ V(P) \); \\
\item \(i \leftarrow 1, \varphi \leftarrow \{\} \); \\
\item \(\text{foreach} \ v \in V(G) \text{ do} \)
\begin{enumerate}
\item Add \((\pi[i], v) \text{ to} \varphi \); \\
\item \(\text{Enumerate}(\pi, \varphi, i + 1) \); \\
\item \(\text{Remove} \ (\pi[i], v) \text{ from} \varphi \); \\
\end{enumerate}
\end{enumerate}
Procedure \(\text{Enumerate}(\pi, \varphi, i) \)
\begin{enumerate}
\item if \(i = |\pi| + 1 \) then Output \(\varphi \), return; \\
\begin{enumerate}
\item \(C_\varphi(\pi[i]) \leftarrow \text{ComputeCandidates}(\pi[i], \varphi) \); \\
\end{enumerate}
\end{enumerate}
\begin{enumerate}
\item foreach \(v \in C_\varphi(\pi[i]) \) do \\
\item if \(v \not\in \varphi.\text{values} \) then Same as Lines 5-7; \\
\end{enumerate}
Function \(\text{ComputeCandidates}(u, \varphi) \)
\begin{enumerate}
\item \(C_\varphi(u) \leftarrow \bigcap_{u' \in N_\varphi(u)}^{} N(\varphi(u')) \); \\
\end{enumerate}
return \(C_\varphi(u) \);

Enumeration order \(\pi \) is a permutation of \(V(P) \). \(\pi[i] \) is the \(i \)th vertex in \(\pi \).
Basic Subgraph Enumeration Algorithm

Algorithm 1: SE Algorithm

Input: a pattern graph P and a data graph G
Output: all matches from P to G

begin
\[\pi \leftarrow \text{compute a connected enumeration order of } V(P); \]
\[i \leftarrow 1, \varphi \leftarrow \{\}; \]
foreach $v \in V(G)$ do
 Add $(\pi[i], v)$ to φ;
 Enumerate $(\pi, \varphi, i + 1)$;
 Remove $(\pi[i], v)$ from φ;
Procedure Enumerate (π, φ, i)
if $i = |\pi| + 1$ then Output φ, return;
/* The computation phase. */
$C_\varphi(\pi[i]) \leftarrow \text{ComputeCandidates}(\pi[i], \varphi)$;
/* The materialization phase. */
foreach $v \in C_\varphi(\pi[i])$ do
 if $v \notin \varphi.values$ then Same as Lines 5-7;
Function ComputeCandidates(u, φ)
$C_\varphi(u) \leftarrow \bigcap_{u' \in N_\pi(u)} N(\varphi(u'))$;
return $C_\varphi(u)$;

Enumeration order π is a permutation of $V(P). \pi[i]$ is the ith vertex in π.
Recursively expand the partial result φ by mapping pattern vertices to data vertices along π to find all matches from P to G.
Basic Subgraph Enumeration Algorithm

Algorithm 1: SE Algorithm

Input: a pattern graph P and a data graph G
Output: all matches from P to G

begin

1. $\pi \leftarrow$ compute a connected enumeration order of $V(P)$;
2. $i \leftarrow 1, \varphi \leftarrow \{\}$;
3. **foreach** $v \in V(G)$ **do**
 4. Add $(\pi[i], v)$ to φ;
 5. Enumerate $(\pi, \varphi, i + 1)$;
 6. Remove $(\pi[i], v)$ from φ;
4. **if** $i = |\pi| + 1$ **then** Output φ, **return**;

Procedure Enumerate (π, φ, i)

 /* The computation phase. */
 $C_\varphi(\pi[i]) \leftarrow$ ComputeCandidates($\pi[i], \varphi$);

 /* The materialization phase. */
 foreach $v \in C_\varphi(\pi[i])$ **do**
 1. **if** $v \notin \varphi$values **then** Same as Lines 5-7;

Function ComputeCandidates(u, φ)

1. $C_\varphi(u) \leftarrow \bigcap_{u' \in N^I_T(u)} N(\varphi(u'))$;
2. return $C_\varphi(u)$;

Enumeration order π is a permutation of $V(P)$. $\pi[i]$ is the ith vertex in π.

Recursively expand the partial result φ by mapping pattern vertices to data vertices along π to find all matches from P to G.

The computation phase is to obtain the candidate set $C_\varphi(\pi[i])$ of $\pi[i]$ given φ, and the materialization phase extends φ by mapping $\pi[i]$ to $v \in C_\varphi(\pi[i])$.

46
Basic Subgraph Enumeration Algorithm

Algorithm 1: SE Algorithm

```
Input: a pattern graph $P$ and a data graph $G$
Output: all matches from $P$ to $G$

begin
  $\pi \leftarrow$ compute a connected enumeration order of $V(P)$;
  $i \leftarrow 1$, $\varphi \leftarrow \{\}$;
  foreach $v \in V(G)$ do
    Add ($\pi[i], v$) to $\varphi$;
    Enumerate($\pi, \varphi, i + 1$);
    Remove ($\pi[i], v$) from $\varphi$;

Procedure Enumerate($\pi, \varphi, i$)
if $i = |\pi| + 1$ then Output $\varphi$, return;
/* The computation phase. */
$C_{\varphi}(\pi[i]) \leftarrow$ ComputeCandidates($\pi[i], \varphi$);
/* The materialization phase. */
foreach $v \in C_{\varphi}(\pi[i])$ do
  if $v \notin \varphi$ values then Same as Lines 5-7;

Function ComputeCandidates($u, \varphi$)
$C_{\varphi}(u) \leftarrow \bigcap_{u' \in N_{\pi}(u)} N(\varphi(u'))$;
return $C_{\varphi}(u)$;
```

Explanation:
- **Enumeration order** π is a permutation of $V(P)$. $\pi[i]$ is the ith vertex in π.
- Recursively expand the partial result φ by mapping pattern vertices to data vertices along π to find all matches from P to G.
- The computation phase is to obtain the candidate set $C_{\varphi}(\pi[i])$ of $\pi[i]$ given φ, and the materialization phase extends φ by mapping $\pi[i]$ to $v \in C_{\varphi}(\pi[i])$.
- Compute common neighbors of data vertices mapped to backward neighbors of u where backward neighbors $N_{\pi}^{-}(u)$ of u is the neighbors of u positioned before u in π.
Parallelize Set Intersection

- Given two sets S_1 and S_2, which are stored as sorted arrays, we use SIMD to parallelize the set intersection between S_1 and S_2.

- We use a hybrid set intersection method to handle the size skewness of input sets:
 1. If the size of S_1 and S_2 is similar, use the merge-based set intersection.
 2. Otherwise, use the Galloping [1] algorithm.
Parallelize Search Tree Exploration

We take the partial results as parallel tasks, and each worker expands the assigned partial results in DFS independently.
Parallelize Search Tree Exploration

We adopt a sender-initiated method with a global concurrent queue to deliver tasks among workers.
Parallelize Search Tree Exploration

We adopt a sender-initiated method with a global concurrent queue to deliver tasks among workers.
Parallelize Search Tree Exploration

We adopt a sender-initiated method with a global concurrent queue to deliver tasks among workers.
Parallelize Search Tree Exploration

We adopt a sender-initiated method with a global concurrent queue to deliver tasks among workers.
Optimize Enumeration Order

Utilize the ordering method proposed in SEED.

Experimental Setup

Algorithms Under Study.

- EH [8]: EmptyHeaded, a relational engine for graph processing that answers queries with WCOJ algorithms.
- CFL [9]: the state-of-the-art labeled subgraph enumeration algorithm.
- SE: Algorithm 1, which is the baseline algorithm.
- LM: LIGHT with the Lazy Materialization strategy only.
- MSC: LIGHT with the Minimum Set Cover based candidate set computation method only.
- LIGHT: LIGHT with both the lazy materialization and the minimum set cover based candidate set computation.
Enumeration Order

SE, LM, MSC and LIGHT adopt the same enumeration order.

- $\pi(P_2) = (u_0, u_2, u_1, u_3)$, $\pi(P_4) = (u_0, u_1, u_4, u_2, u_3)$, and $\pi(P_6) = (u_0, u_1, u_2, u_3, u_4)$.

The enumeration order of CFL is as follows.

- $\pi(P_2) = (u_0, u_2, u_1, u_3)$, $\pi(P_4) = (u_0, u_2, u_4, u_1, u_3)$, and $\pi(P_6) = (u_0, u_1, u_2, u_3, u_4)$.

The enumeration order of EH is as follows.

- $\pi(P_2) = (u_1, u_3, u_0, u_2)$
- $\pi(P_4') = (u_0, u_3, u_4, u_1)$, and $\pi(P_4'') = (u_0, u_3, u_2)$. Join the matches of P_4' and P_4''.
- $\pi(P_6') = (u_0, u_1, u_2, u_3)$, and $\pi(P_6'') = (u_0, u_1, u_4)$. Join the matches of P_6' and P_6''.
Reducing Redundant Computation

- EH runs slower than other algorithms on P_2, and runs out of memory on P_4 and P_6.

Comparison of Execution Time.

Comparison of Number of Set Intersections.
Reducing Redundant Computation

- EH runs slower than other algorithms on \(P_2\), and runs out of memory on \(P_4\) and \(P_6\).
- CFL cannot complete \(P_4\) within the time limit, and performs the same number of set intersections with SE.
Reducing Redundant Computation

- EH runs slower than other algorithms on P_2, and runs out of memory on P_4 and P_6.
- CFL cannot complete P_4 within the time limit, and performs the same number of set intersections with SE.
- LIGHT significantly reduces the number of set intersections compared with SE, and outperforms the other algorithms.

Comparison of Execution Time.

Comparison of Number of Set Intersections.
Parallelization

- HybridAVX2 runs 1.2-6.5X times faster than Merge.

![Execution Time with Different Set Intersection Methods.](image)

- Execution Time with the Number of Threads Varied.

![Execution Time with the Number of Threads Varied.](image)
Parallelization

- HybridAVX2 runs 1.2-6.5X times faster than Merge.
- LIGHT achieves almost linear speedup, when #threads varies from 1 to 16.
Comparison with Existing Algorithms

Execution Time of LIGHT, DUALSIM, SEED and CRYSTAL on the Real-world Datasets.
Backup

<table>
<thead>
<tr>
<th>Dataset</th>
<th>yt</th>
<th>eu</th>
<th>lj</th>
<th>ot</th>
<th>uk</th>
<th>fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory (GB)</td>
<td>0.123</td>
<td>0.090</td>
<td>0.022</td>
<td>0.048</td>
<td>0.239</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Memory consumption of candidate sets on P_5.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>P_2</th>
<th>P_4</th>
<th>P_6</th>
<th>P_2</th>
<th>P_4</th>
<th>P_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
<td>yt</td>
<td></td>
<td></td>
<td>lj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage</td>
<td>34.8%</td>
<td>35.9%</td>
<td>8.1%</td>
<td>1.1%</td>
<td>2.1%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Percentage of the Galloping search.
Backup

The Number of Matches (P_0 represents the triangle).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>lj</th>
<th>ot</th>
<th>uk</th>
<th>fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_0</td>
<td>1.78×10^8</td>
<td>6.28×10^8</td>
<td>2.22×10^9</td>
<td>4.17×10^9</td>
</tr>
<tr>
<td>p_1</td>
<td>2.64×10^{10}</td>
<td>1.28×10^{11}</td>
<td>9.15×10^{11}</td>
<td>4.66×10^{11}</td>
</tr>
<tr>
<td>p_2</td>
<td>3.95×10^{10}</td>
<td>6.71×10^{10}</td>
<td>1.11×10^{12}</td>
<td>1.85×10^{11}</td>
</tr>
<tr>
<td>p_3</td>
<td>5.22×10^9</td>
<td>3.22×10^9</td>
<td>1.07×10^{11}</td>
<td>8.96×10^9</td>
</tr>
<tr>
<td>p_4</td>
<td>2.62×10^{13}</td>
<td>4.97×10^{13}</td>
<td>9.42×10^{14}</td>
<td>5.47×10^{13}</td>
</tr>
<tr>
<td>p_5</td>
<td>7.38×10^{15}</td>
<td>4.01×10^{15}</td>
<td>6.13×10^{17}</td>
<td>1.34×10^{15}</td>
</tr>
<tr>
<td>p_6</td>
<td>9.56×10^{12}</td>
<td>2.60×10^{12}</td>
<td>4.01×10^{14}</td>
<td>3.18×10^{12}</td>
</tr>
<tr>
<td>p_7</td>
<td>2.46×10^{11}</td>
<td>1.58×10^{10}</td>
<td>1.16×10^{13}</td>
<td>2.17×10^{10}</td>
</tr>
</tbody>
</table>