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Why graphs?



Everything is Naturally Connected




Model Connected World as Structural Data
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Model Connected World as Structural Data

Query 1.

Find cities where Bob’s
friends visited.




Model Connected World as Structural Data
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3. Find cities where Bob's friends visited.

Query 1.

Find cities where Bob’s
friends visited.




Model Connected World as Structural Data

Create a table to maintain connections.

_______________________

Query 1:
Find cities where Bob’s
friends visited.

Query 2:
Add a “like” connection
between Bob and cities where

Bob’s friends visited.



Hard to Capture Complex Connections

______________ Difficult to interpret deep
connections in data.
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Hard to Capture Complex Connections

Difficult to interpret deep
connections in data.

Poor performance for deep
connection analysis.

10



Hard to Capture Complex Connections

Difficult to interpret deep
connections in data.

Poor performance for deep
connection analysis.

Sophisticated to represent rich

- connections in data.




Model Connected World as Graphs
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Model Connected World as Graphs

Execute a depth-first search from Bob with the constraint
friend — visited — located on the label sequence.
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Model Connected World as Graphs

Execute a depth-first search from Bob with the constraint
friend — visited — located on the label sequence.

City

\Seuy,
DTy,
; \

- Lo
Q./\@e\ Toy, ~ - = N varis */

p n
xed |
A s \0C22
\. - -«
"

is located in .

Leonardo

lic . %
% pce E da Vinci
4 -3

F %-
“\\_j\'

?\a Ce -B"H - e

i<
C
3%

al;
O Bob Ay W
“-'-‘”}("t": d -
’7,),)0 Washington

La Joconde a
7

Query 1:

Find cities where Bob’s
friends visited.
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Model Connected World as Graphs

Insert an edge from Bob to Paris in the graph. The edge is
labeled as likes.

City
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Query 1.

Find cities where Bob’s
friends visited.
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Graph is an Effective Way for Us to Understand and
Manage Connected Data

High performance for

connection queries.

Leonardo
da Vinci

La Joconde a
Washington

16



Graph is an Effective Way for Us to Understand and
Manage Connected Data
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Graph is an Effective Way for Us to Understand and
Manage Connected Data

Qusey, High performance for

connection queries.
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We Use Graphs Everyday and Everywhere
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We Use Graphs Everyday and Everywhere
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We Use Graphs Everyday and Everywhere
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What Is subgraph query processing?
Why Is It Important?



Retrieve Information from Graph Data
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Retrieve Information from Graph Data
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Subgraph Query Example

Result set: {(Bob, Alice, Eiffel Tower, Paris)}.
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Subgraph Matching

« Asubgraph isomorphism (call a match for short) from a graph g to another graph g’ is an
Injective function M from VV(g) to V(g') such that:

e Yu€eV(g),L(u) =L(M(u)) and Ve(u,u') € E(g),e(M(u),M(u")) € E(g").

« Subgraph matching finds all matches from a query graph g to a data graph G.

{(ug, vp), (uq,vy1), (uy, vy),
(us, v10), (U, V11)}

Query graph q Data graph G
26



Subgraph Matching

 The fundamental operation to retrieve information from graph data.
* The core functionality in graph database management systems.

* The primitives in many graph analysis operations.

27



What are the challenges?



Challenges of Graph Data Processing
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Challenges of Graph Data Processing

10

Large Volume:
Millions even trillions of edges.

Complex Structure:
Skewness, local dense communities.
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Number of Vertices

C

hallenges of Graph Data Processing
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Figure source: https://github.com/eleurent/twitter-graph :



My Primary Research

» Develop efficient and effective techniques to accelerate subgraph query processing.

Systematic Algorithmic \ '
Evaluation Optimization

Hardware
Utilization
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In-Memory Subgraph Matching: An In-
Depth Study

Shixuan Sun and Qiong Luo

Hong Kong University of Science and Technology



Preliminaries

« Deciding whether g’ contains g, i.e., the subgraph isomorphism problem, is NP-complete.

» Deciding whether g’ is identical to g, i.e., the graph isomorphism problem, belongs to NP,
but not known to be P or NP-complete.
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Matching Order

« Given a query graph g, a matching order, denoted as r, is a permutation of vertices in q.
n[i] Is the ith vertex in @, and r[i:j] Is the set of vertices from index i to j in .

 Example: n=(ul,u2,ud,u3), n[1]=ul and [1:3]={ul,u2,ud}.

(a). Query graph g (b). Data graph G
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Complete Candidate Set

« Given g and G, a complete candidate set of a query vertex u, denoted as u. C, is a set of
vertices in ¢ such that if a mapping (u, v) is in any subgraph isomorphism from g to G,
then v belongs to u. C.

 Example: u2.C = {v|v € V(G) and L(v) = L(u2)} = {v2,v5, v8}.

(a). Query graph g (b). Data graph G
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Partial Subgraph Isomorphism (PSI)

« Given g, G and m, a partial subgraph isomorphism f; Iis a subgraph isomorphism from
q[rm[1:i]] to G where 1 <i < |V(q)|, and g[r[1:i]] IS a vertex induced subgraph of g
given r[1:i]. Specifically, f, = {}, and fy (4 Is a subgraph isomorphism from g to G.

 Example: Suppose © = (ul, u2,u4,u3).
o f3 ={(ul,v3), (u2,v5), (u4,v6)} is a partial subgraph isomorphism.

u3

(a). Query graph g (b). Data graph G

38



Feasible Mapping

- Giveng, G, m, f;, u=mn[i+1]andv e u.C where 0 <i < |V(q)| — 1, a mapping (u,v) is
feasible if f; can be extended to f;,; by adding the mapping (u, v) to f;. Otherwise, the
mapping is infeasible.

« Feasible condition:
1. L(u) = L(v);
2. visnotmapped;

3. For every vertex u' that has been mapped, if e(u,u’) €
E(q),then e(v,f(u’)) € G.

39



Example Feasible Mapping

® Givenm = (ul,u2,u4,u3),u4.C = {vl, v3,v4,v6} and f, = {(ul,v3), (u2,v5)}:
« the mapping (u4, v3) is infeasible: v3 has been mapped;
- the mapping (u4,v4) is infeasible: e(v3,v4) & E(G);
« the mapping (u4, v6) is feasible;

* f, can be extended to f; = {(ul,v3), (u2, v5), (u4,v6)} by adding the feasible
mapping (u4, v6).

(A)
)y
7

u3

(a). Query graph g (b). Data graph G
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Example Feasible Mapping

® Givenm = (ul,u2,u4,u3),u4.C = {vl, v3,v4,v6} and f, = {(ul,v3), (u2,v5)}:
« the mapping (u4, v3) is infeasible: v3 has been mapped;
- the mapping (u4,v4) is infeasible: e(v3,v4) & E(G);
« the mapping (u4, v6) is feasible;

* f, can be extended to f; = {(ul,v3), (u2, v5), (u4,v6)} by adding the feasible
mapping (u4, v6).

’:

u3

(a). Query graph g (b). Data graph G
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Graph Exploration based Approaches

® General Idea:
Input: a query graph g and a data graph G
Output: all subgraph isomorphisms from g to ¢
1. Generate a matching order m;
2. Obtain a complete candidate set u. C for every vertex u € V(q);

3. Recursively enumerate all solutions by extending partial subgraph
Isomorphisms iteratively along .

42



Generate Matching Order and Candidate Sets

® Generate a matching order:
« 1 = the input order of query vertices.
 Example: m = (ul,u2,u3, u4).

® Generate complete candidate sets:
e u.C={wlveV(G),L(v) =L and d(v) = d(u)},
for everyu € V(q).
« Example: ul.C = {v1,v3,v4,v6},u2.C = {v2,v5},u3.C =
{v7,v9},ub.C = {vl,v3, v4, v6}.

(a). Query graph g (b). Data graph G
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Recursive Enumeration Process

ul.C = {vl,v3,v4,v6}
u2.C = {v2,v5}
u3.C = {v7,v9}

ud.C = {vl,v3,v4,v6}
fo=1{}
ul @

u3

(a). Query graph g

ul

u2

u3

u4

* Node: a psi

fo @ - Edge: a mapping

* Cross: infeasible mapping
 Tick: a solution

(b). Data graph G

44



Backtracking Enumeration Process

ul.C ={v1v3, v4, v6}
u2.C = {v2,v5}
u3.C = {v7,v9}

ud.C = {vl,v3,v4,v6}
fo=1{}
ul @

u3

(a). Query graph g

ul

u2

u3

u4

* Node: a psi

fo T - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

(b). Data graph G
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Backtracking Enumeration Process

ul.C ={v1v3, v4, v6}
u2.C = {v2,v5}
u3.C = {v7,v9}

ud.C = {vl,v3,v4,v6}

fi ={(ul, v1)}

()
Bal

u3

(a). Query graph g

ul

u2

u3

u4

* Node: a psi

fo - Edge: a mapping
vl * Cross: infeasible mapping

* Tick: a solution

(b). Data graph G
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Backtracking Enumeration Process

ul.C ={v1v3, v4, v6}
u2.C = «{vZ,vS}
u3.C = {v7,v9}

ud.C = {vl,v3,v4,v6}

fi ={(ul, v1)}

(a). Query graph g

ul

u2

u3

u4

f * Node: a psi

0 - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

v2

(b). Data graph G
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Backtracking Enumeration Process

ul.C ={v1v3, v4, v6}
u2.C = «{vZ,vS}
u3.C = {v7,v9}

ud.C = {vl,v3,v4,v6}

f2 = {(ul,v1), (u2,v2)}

u3

(a). Query graph g

ul

u2

u3

u4

f * Node: a psi

0 - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

v2

(b). Data graph G
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Backtracking Enumeration Process

ul.C = i{v1v3 v4, v6)
u2.C = «{vZ,vS}
u3.C = ({:1:;:7}1;9}
ud.C = {vl,v3,v4,v6}

f2 = {(ul,v1), (u2,v2)}

()

u3
(a). Query graph g

ul

u2

u3

u4

f * Node: a psi

0 - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

v2

(b). Data graph G
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Backtracking Enumeration Process

ul.C = i{v1v3 v4, v6)
u2.C = «{vZ,vS}
u3.C = ({:1:;:7}1;9}
ud.C = {vl,v3,v4,v6}

f2 = {(ul,v1), (u2,v2)}

()

u3
(a). Query graph g

ul

u2

u3

u4

f * Node: a psi

0 - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

v2

(b). Data graph G
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Backtracking Enumeration Process

ul.C = i{v1v3 v4, v6)
u2.C = «{vZ,vS}
u3.C = {v7i;:1:753:}
ud.C = {vl,v3,v4,v6}

f2 = {(ul,v1), (u2,v2)}

()

u3
(a). Query graph g

ul

u2

u3

u4

f * Node: a psi

0 - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

v2

(b). Data graph G
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Backtracking Enumeration Process

ul.C = i{v1v3 v4, v6)
u2.C = «{vZ,vS}
u3.C = {v7i;:1:753:}
ud.C = {vl,v3,v4,v6}

f2 = {(ul,v1), (u2,v2)}

()

u3
(a). Query graph g

ul

u2

u3

u4

f * Node: a psi

0 - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

v2

(b). Data graph G
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Backtracking Enumeration Process

ul.C ={v1v3, v4, v6}
u2.C = «{vZ,vS}
u3.C = {v7,v9}

ud.C = {vl,v3,v4,v6}

f2 = {(ul,v1), (u2,v2)}

u3

(a). Query graph g

ul

u2

u3

u4

f * Node: a psi

0 - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

v2

(b). Data graph G
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Backtracking Enumeration Process

ul.C ={v1v3, v4, v6}
u2.C = {vZ,(vS}E)
u3.C = {v7,v9}

ud.C = {vl,v3,v4,v6}

fi ={(ul,v1)}

(a). Query graph g

ul

u2

u3

u4

f * Node: a psi

0 - Edge: a mapping

vl * Cross: infeasible mapping
 Tick: a solution

v2 v5

(b). Data graph G
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Backtracking Enumeration Process

ul

u2

u3

u4

* Node: a psi

+ Edge: a mapping

* Cross: infeasible mapping
 Tick: a solution

vl Y v4 v6
v2 v5 V2 v5 v2 v5 v2 v5
X X X
v7,9 v7/ v9 v7,9 7 \.v9 v7
X ‘\‘ X X X X
\ 6 v1,3,4 v1,3,4,6
v Compact v7 and -
v9 due to space ." Jo x x N
limit. N \

v9

(a). Query graph g

(b). Data graph G
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Key Issues of Minimizing Search Space

® |ssuel:
« Optimize the matching order to prune the invalid search

paths at an early stage.

® |ssue 2.
« Decrease the search breadth of every psi.

o e e e e e = e e e e e

ul

u3

_____

I

I

I

I

I

I
u2|I

I

I

I

I

I

I

vl

-

Compact v7 and
19 due to space
limit.

v5

v4

v2

v6

v9

* Node: a psi

+ Edge: a mapping

+ Cross: infeasible mapping
+ Tick: a solution

v5

v9
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Representative Algorithms

Methodologies Algorithms

QuickSl, GADDI, SPath, GraphQL,
Backtracking Search Turbolso, Boostlso, CFL, SGMatch,
Database CECI, DP'iSO, PGX, PSM, STW|g

EmptyHeaded, Graphflow, LogicBlox,
PostgreSQL, MonetDB, Neo4|, GpSM

Multi-way Join

Ullmann, VF2, VF2++, VF3, LAD,

Artificial Intelligence Backtracking Search
Glasgow

Bioinformatics Backtracking Search RI, VF2+, Grapes
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Representative Algorithms

Methodologies Algorithms

QuickSl, GADDI, SPath, GraphQL,
Backtracking Search Turbolso, Boostlso, CFL, SGMatch,
Database CECI, DP'iSO, PGX, PSM, STW|g

EmptyHeaded, Graphflow, LogicBlox,
PostgreSQL, MonetDB, Neo4j, GpSM

Ullmann, VF2, VF2++, VF3, LAD,
Glasgow

Multi-way Join

Artificial Intelligence Backtracking Search

Bioinformatics Backtracking Search RI, VF2+, Grapes




Category of Backtracking-Based Algorithms

O Direct-Enumeration: Directly explore G to find all results.
» Example algorithms: QuickSl, Rl and VF2++.

59



Category of Backtracking-Based Algorithms

O Direct-Enumeration: Directly explore G to find all results.
» Example algorithms: QuickSl, Rl and VF2++.

O Indexing-Enumeration: Construct indexes on G and answer all queries with
the assistance of indexes.

» Example algorithms: GADDI and SGMatch.
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Category of Backtracking-Based Algorithms

O Direct-Enumeration: Directly explore G to find all results.
» Example algorithms: QuickSl, Rl and VF2++.

O Indexing-Enumeration: Construct indexes on G and answer all queries with
the assistance of indexes.

» Example algorithms: GADDI and SGMatch.

O . Generate candidate vertex sets per guery at
runtime and evaluate the query based on candidate vertex sets.

» Widely used in the latest algorithms proposed in the database community.
» Example algorithms: GraphQL, TurbolSO, CFL, DP-iso and CECI.
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Observation

O Technigues in existing algorithms can be classified into several categories
each of which have the same goal.
» Example: Methods filtering candidates, methods optimizing the matching order.
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Observation

O Technigues in existing algorithms can be classified into several categories
each of which have the same goal.
» Example: Methods filtering candidates, methods optimizing the matching order.

O The methods are closely related and all affect the evaluation performance.
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Observation

O Technigues in existing algorithms can be classified into several categories
each of which have the same goal.
» Example: Methods filtering candidates, methods optimizing the matching order.

O The methods are closely related and all affect the evaluation performance.

O Previous studies regard each algorithm as a black box.
» Hide effectiveness of individual techniques.

,‘
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\
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Our Work

O Study technigues in the algorithms within a framework.
» Compare and analyze individual techniques in existing algorithms.
» Conduct extensive experiments to evaluate the effectiveness of the techniques.
» Pinpoint techniques leading to the performance differences and make recommendation.
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Our Work

O Study technigues in the algorithms within a framework.
» Compare and analyze individual techniques in existing algorithms.
» Conduct extensive experiments to evaluate the effectiveness of the techniques.
» Pinpoint techniques leading to the performance differences and make recommendation.

O Select algorithms from different communities.
» GraphQL [SIGMOD’08]
» CFL [SIGMOD’16]
» CECI [SIGMOD’19]
» DP-iso [SIGMOD’19]
» QuickSI [VLDB’08]
» Rl [BMC Bioinformatics’13]
» VF2++ [Discrete Applied Mathematics’18]
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Common Framework

Query Graph q

Data Graph G

Input

Filtering
Method

Step 1

Step 2

%

Enumeration
C(U) Method

Step 3

All Subgraphs of
G ldentical to g

Output

Subgraph Matching

O Filtering Method: Given g and G, minimize candidate vertex sets C(u) for each u € V(q).
» C(u): A set of data vertices v € V() that can be mapped to wu.

O Ordering Method: Optimize the matching order ¢ based on the statistics of candidate vertex sets.
> @ A sequence of query vertices V(q).

O Enumeration Method: Iteratively extend partial results M by mapping u € V(q) to v € C(u) along ¢.
» M: Adictionary storing mappings between query vertices to data vertices.
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Principles of Our Study

O Study the performance of the algorithms from four aspects.

O When comparing one component, fix the others for fair comparison.

Algorithm 1

Algorithm 2

Algorithm 3

PEEppp—— N ermrmimee. N ermrmamem. N
I 1! ! |
| Filtering HAl" Ordering M Enumeration §
Method o Method  HE :
— — T ormem = <
w B . ! . 1
Filtering al| Ordering M Enumeration § ,
Method  HEEf Method ; :
r— — I l
| | | |
| |

A\

Filtering :

;

Ordering K
Method  }

l
! Enumeration
I Method

i
s  Other
Sl Optimization
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Filtering Method

0 Basic Method: Filtering C(u) based on the label L(u) and degree d(u) of u,
lLe.,, C(u) ={veV(@)|Lwv) =Luw)Ad() = du)}

» Take u, and u; as examples: C(u,) = {vq,vs3, v}, C(uz) = {vg, V19, V12}

(a) Query graph q. (b) Data graph G. 69



Filtering Method

O Filtering Rule: Given v € C(u), if there exists u’ € N(u) such that N(v) n
C(u') = @, then v can be removed from C (u).

O Advanced Method: Filtering C(u) with the rule along a sequence of u € V(q).
» Example algorithms: GraphQL, CFL, CECI and DP-iso.
» Major differences: The filtering sequence and the number of rounds repeated.

(a) Query graph q. (b) Data graph G. 70



Filtering Method

O Build an auxiliary data structure A to record edges between candidate
vertex sets.
» Serve the cardinality estimation in the ordering method.
» Accelerate the subsequent enumeration method.

(b) Data graph G.

ImT T T TTTmossssmsmm------e
1 C v
: C(“o) ; C(uy) ”o C(uo (o) [Yo

C v
i | / \ Clu) Y2 [V I~ ) [
|C(”l) S5 C(up)|valvs — V3 Vs
! C(u | V3 1)5|
! ! Cluy) C (uy)
1 C(u,)
| Mool usy) : Pro]i|c (uq) C (uz) 1012 ’ Cluz)o]r2

________________________

GraphQL A of CFL A of CECI A of DP-iso



Ordering Method

O Adopt the that (1) selects a start vertex; and (2) iteratively
adds unselected guery vertices to ¢ according to the cost estimation based
on C and A.

» The major difference is the :
» GraphQL: Select the vertex u with the minimum |C (u)| at each step.
» CFL/DP-iso: Select the path of g with the minimum number of embeddings in A at each step.
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Enumeration Method

O Extend partial results by mapping u € V(q) to v € C(u) along ¢ with the
assistance of A.
» GraphQL: Probe ¢ for all edge validation.
» CFL: Probe (- and A for the non-tree and tree edge validation, respectively.
» DP-iso/CECI: Probe A for all edge validation.

S
C(u;)[V2{Y4

Va(vy ————'<V3)"’5

V10["12|C (u5) C(uz)[10[12

A of CFL A of CECI A of DP-iso



Enumeration Method

O Extend partial results by mapping u € V(q) to v € C(u) along ¢ with the

assistance of A.

» GraphQL: Probe ¢ for all edge validation.

» CFL: Probe (- and A for the non-tree and tree edge validation, respectively.

» DP-iso/CECI: Probe A for all edge validation.

C (ug){oh ¢ wy){(¥o)
\ -
1/ \ i

V4

__——-<v3)v5

caup[ala}- - L] cen

C(uy)

________________________

A of CFL

C (uy)

C (uj)

\)

C (uy)| Yo

V4

V10

V12

A of CECI

Recommendation: Use the DP-iso/CECI-style
auxiliary data structure and enumeration method.

A of DP-iso



Optimization Method

O Failing set pruning: During the enumeration, utilize the information obtained
from the explored part of the search tree to prune invalid partial results.
» Proposed by DP-iso.
» Other algorithms can adopt the optimization as well.
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Experimental Setup

» All algorithms are implemented in C++ and run on a machine with 2.3GHz CPUs and

128GB RAM.
» Real-world data graphs:

» Query sets:

| Category | Dataset | Name | [V]| | |E| | IZ] | d |
Yeast ye 3,112 12,519 71 8.0
Biology Human hu 4,674 86,282 44 | 369
HPRD hp 9,460 34,998 307 | 74

| Lexical | WordNet | wn | 76853 | 120399 | 5 | 3.1 |

| Citation | USPatents | up | 3,774,768 | 16,518,947 | 20 | 8.8 |
Social Youtube yt 1,134,890 | 2,987,624 | 25 | 53
DBLP db 317,080 | 1,049,866 | 15 | 6.6

| Web | eu2005 | eu | 862,664 [ 16,138,468 | 40 | 37.4 |

» Query graphs are randomly extracted from the data graph.
» Each query set contains 200 connected graphs with the same number of vertices.

> Q;p and Q;s denote dense (d(q) = 3) and sparse (d(q) < 3) query sets containing graphs with i vertices.

» Each data graph has 1800 queries in total.

| Dataset | Query Set | Default
Yeast, HPRD, US Patents, Youtube, | Q4, Qsp, Q160> Q240> O32D, | O32D,
DBLP, eu2005 Oss, Q16s, Q2s, D328 Qs32s
Human, WordNet Q4, Qsp> Q120> Q16D> Q2005 | Q20D>
Qss, Q12s, Q16s, Q208 Q208
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Num of Candidate Vertices
e e e e e

O © o o o o
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Effectiveness of Filtering Methods

. : . 1 1
O Metrics: Num of Candidate Vertices = @ZqEQmZuEV@ |C(w)] .

O Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.

_ EL\DF IGQL C\FL COICECH EEEIDP STEADY | LDF: Label and degree filter.
h A GQL: Filtering of GraphQL.

\

[TITTTT

|
|
| = = —h 4| 4 CFL:Filtering of CFL.
: = = =l P01 | CECI: Filtering of CECI.
St : SN B =N = | || DP: Filtering of DP-iso.
~E~A = i = ot j B 4| 1 STEADY: Given v € C(u), it satisfies
; — i :E =ENE ig4 AN that vu' € N(uw),N(v) n C(u") # 0.
pdb_ i eu yt up wn

Varying datasets on dense query sets.



o
o

o
w

e I = =
o o o

Num of Candidate Vertices

Effectiveness of Filtering Methods

. . . 1 1
O Metrics: Num of Candidate Vertices = @ZQEQWZ”EV(") |C(uw)].

O Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.
O Recommendation: Adopt the filtering method of GraphQL/CFL/DP-iso to prune candidate vertex sets.

- E=ILDF  22IGQL C\FL CAICECH EEIDP STEADY { LDF: Label and degree filter.
X h GQL: Filtering of GraphQL.
1| 1 CFL: Filtering of CFL.
CECI: Filtering of CECI.
1 DP: Filtering of DP-iso.
| STEADY: Given v € C(u), it satisfies
SNz that vu' € N(u), N(wv) n C(u") # 9.
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Enumeration Time (ms)

10’
10°

104}
103}
102}

100}

101t

Effectiveness of Ordering Methods

O Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt

candidate vertex sets of GraphQL.

O Metrics: Enumeration Time = ﬁZqEQT(A, q).

O Finding: GraphQL and RI are usually the most effective among competing methods.

Varying datasets on dense query sets.

. 1QSI E4GQL E=4CFL LOICECI EEDP Rl [eoi2PP GraphQL
o I ~ o =NH B
_'_'_“_— Co = o] p— ;, —] "_T_T U; \%— l :uc
— -:o = E)c — Do —] ] c:O 7 \ = = AN a-s
— o —x g — o —] _ o < b ¢ = \ o
1 co : Dc — Do ] _ cnO : DOL —] . _ oc
— A= - o — — o] —ix Y= X — o
— so : l:}c — l:)o —] _ oO — r Do — \ _ DC
el H 1 : Co : Dc —_ DO ] _ crnO — ::f:‘. DOL —] \ _ oc
S = N ExuNENRIEESANENVERESEN S AIEE <IN E RIS SANG NG E SN E
hp ye db eu yt up hu '« w,nz'
. 7

1 QSI: Ordering of QuickSl.

1 GQL: Ordering of GraphQL.
1 CFL: Ordering of CFL.

| CECI: Ordering of CECI.

DP: Ordering of DP-iso.
RI: Ordering of RI.

1 2PP: Ordering of VF2++.
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Enumeration Time (ms)

Effectiveness of Ordering Methods

O Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt
candidate vertex sets of GraphQL.

O Metrics: Enumeration Time = ﬁZqEQT(A, q).

O Finding: GraphQL and RI are usually the most effective among competing methods.
O Recommendation: Adopt GraphQL and Rl on dense and sparse data graphs respectively.

- 1QSI EJIGQL E=4ACFL CXICECI EEIDP Rl [<i2PP 1 QSI: Ordering of QuickSl.

1 GQL: Ordering of GraphQL.
1 CFL: Ordering of CFL.

CECI: Ordering of CECI.

DP: Ordering of DP-iso.

1 RI: Ordering of RI.

1 2PP: Ordering of VF2++.
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Varying datasets on dense query sets. v
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Effectiveness of Failing Set Pruning

O Setup: Continue with the experiments on ordering methods and enable the failing set pruning.
O Metrics: Count the number of unsolved queries within 5 minutes.

O Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all
competing algorithms can generate ineffective matching orders.

. ooyb up wn
Algorlthm | wo/fs w/fs H wo/fs w/fs wo/fs w/fs wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
QSI : 14 0 H 26 4 n 69 20 Fail-ALL: Number of queries that no competing
GQL ' 11 0 H 23 8 H 17 3 algorithms can complete within 5 minutes.
CFL | 95 6 | 24 12 i 191 | 139
CECI || 161 5 I 39 7 | 547 | 351
DP 70 6 | 40 13 i 307 | 221
RI | 2 0 [f 18 8 | 0 0
2PP 49 | 3 | 49 17 : 270 220
Fail-All 0 0 7 3 i 0 0

| =

Number of unsolved queries among 1800 queries for each data graph. 81



Effectiveness of Failing Set Pruning

O Setup: Continue with the experiments on ordering methods and enable the failing set pruning.
O Metrics: Count the number of unsolved queries within 5 minutes.

O Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all
competing algorithms can generate ineffective matching orders.

O Recommendation: Enable failing set pruning for large queries.

. ooyb up wn
Algorlthm | wo/fs w/fs H wo/fs w/fs w/fs wo/fs w/fs wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
QSI : 14 0 H 26 2 n 6 69 20 Fail-ALL: Number of queries that no competing
GQL ' 11 0 H 23 8 H 2 17 3 algorithms can complete within 5 minutes.
CFL | 95 6 | 24 12 i 8 191 | 139
CECI || 161 5 I 39 7 | 9 547 | 351
DP 70 6 | 40 13 i 20 307 | 221
RI | 2 0 [f 18 8 | 9 0 0
2PP 49 | 3 | 49 17 : 7 270 220
Fail-All 0 0 7 3 i 0 0 0

| =

Number of unsolved queries among 1800 queries for each data graph. 82



Summary

O Compare and analyze individual techniques in seven algorithms from
three communities within a common framework.

O Conduct extensive experiments to evaluate the effectiveness of each kind
of methods respectively.

O Report our new findings and make the recommendation through
experiments and analysis.
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https://github.com/RapidsAtHKUST/SubgraphMatching

Outline

« Algorithms
» RapidMatch: A Holistic Approach to Subgraph Query Processing. VLDB 2021.
« PathEnum: Towards Real-Time Hop Constraint s-t Path Enumeration. SIGMOD 2021.

 Parallelization
* LIGHT: Parallelizing Subgraph Query Processing. ICPADS 2018 & ICDE 20109.
* ThunderRW: An In-Memory Graph Random Walk Engine. VLDB 2021.
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RapidMatch: A Holistic Approach to
Subgraph Query Processing

Shixuan Sun?, Xibo Sun?, Yulin Che?, Qiong Luo?, Bingsheng Hel

INational University of Singapore
2Hong Kong University of Science and Technology



Two Trends of Methods on the Same Problem

Exploration-based Methods Join-based Methods
CFL [SIGMOD'16], DP-iso [SIGMOD’19] EmptyHeaded [SIGMOD'16], GraphFlow [VLDB'19]

Native methods specifically designed for Evaluating subgraph queries with worst-

Methodology

subgraph query processing. case optimal join (WCQJ).
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Two Trends of Methods on the Same Problem

Exploration-based Methods Join-based Methods
CFL [SIGMOD'16], DP-iso [SIGMOD’19] EmptyHeaded [SIGMOD'16], GraphFlow [VLDB'19]

Native methods specifically designed for Evaluating subgraph queries with worst-

Methodology

subgraph query processing. case optimal join (WCQJ).

Q with tens of vertices on G having Q with a few vertices (<10) on G having

Workload

thousands to millions of vertices. up to hundreds of millions of vertices.
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Two Trends of Methods on the Same Problem

Exploration-based Methods
CFL [SIGMOD’16], DP-iso [SIGMOD’19]

Native methods specifically designed for

subgraph query processing.

Q with tens of vertices on G having
thousands to millions of vertices.

Optimizing query plans with greedy
methods based on cardinality estimation.

Join-based Methods
EmptyHeaded [SIGMOD’16], GraphFlow [VLDB’19]

Evaluating subgraph queries with worst-

Methodology case optimal join (WCOJ).

Q with a few vertices (<10) on G having

Workload up to hundreds of millions of vertices.
Query Plan Finding the optimal query plan based on
Optimization cardinality estimation in a plan space.
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Two Trends of Methods on the Same Problem

Exploration-based Methods
CFL [SIGMOD’16], DP-iso [SIGMOD’19]

Native methods specifically designed for

subgraph query processing.

Q with tens of vertices on G having
thousands to millions of vertices.

Optimizing query plans with greedy

methods based on cardinality estimation.

Applying advanced filtering methods to

reduce the input graph size.

Methodology

Workload

Query Plan
Optimization

Input
Filtering

Join-based Methods
EmptyHeaded [SIGMOD’16], GraphFlow [VLDB’19]

Evaluating subgraph queries with worst-

case optimal join (WCQOJ).

Q with a few vertices (<10) on G having
up to hundreds of millions of vertices.

Finding the optimal query plan based on
cardinality estimation in a plan space.

Simply utilizing labels to pruning the input

graph.
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Problems Studied in Our Work

Q1. Is one kind of methods inherently better than the other?
Al. No, the complexity of result enumeration in state-of-the-art
exploration-based methods can match that of WCOJ.
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Problems Studied in Our Work

* Q1. Is one kind of methods inherently better than the other?
« Al. No, the complexity of result enumeration in state-of-the-art
exploration-based methods can match that of WCOJ.

* Q2: How to design an approach to handle various workloads efficiently?
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Evaluating Subgraph Query with Join

Subgraph » Multi-way
Join

Q == R(uy,uy) @ R(ug,uz) \
> R(uy, uz) ™ R(uq, uy)

R(uy,us3) R(uy,uy)
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Evaluating Subgraph Query with Join

» Relation
Generation

/7 \

- mm m Em Em Em Em Em Em Em Em Em Em Em Em Em Em E—
~

=

Result
Enumeration

7 -
\ 4
Q = R(uy,u;) 4 R(ug,uz) \ ,” Matching Candidate
M R(uy, uz) M R(uq, uy) :{ Order ¢ Data Vertex
¥
II uZ {v3'v9}
R(uy,u3) R(uy,ug) 1 .
B :
u, us u, u, 11 R(uz: v3,u3)
¥
vV, V vV, V
2 4 2 1 1 U3 {174}
Vs Vy Ve Vg 1
Ve V, Vi Vg I
¥
Ve V7 I
dptlzn Uy ) {7}
u, u; v, Vg 11
Vs Vy Ve V H
5 V3 ¥
Vo V7 Vg Vg I
Vio Vs vy Vg o u, {7}
Iy
v R(uz,u3) R(uq,uz) ,’ b
N e e e e e e e e e - - ~

Notation:

A4 R(u:v,u’): The neighbors

of vin R(u,u’).
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Evaluating Subgraph Query with Join

» Relation
Generation

/7 \

- mm m Em Em Em Em Em Em Em Em Em Em Em Em Em Em E—
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e - ~
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Q = R(uy,u;) 4 R(ug,uz) \ ,” Matching Candidate
M R(uy, uz) M R(uq, uy) :{ Order ¢ Data Vertex
I
1 | uZ {v3' 179}
R(uq,u3) R(ui,ug) 1
1 :
u, u u, u, 11i R(uz: v3,u3)
I
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Vo V7 Ve Vg I
Vio Vs vy Vg o u, {7}
Iy
v R(uz,u3) R(uq,uz) ,’ b
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=

Result
Enumeration

Notation:

A4 R(u:v,u’): The neighbors

of vin R(u,u’).
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Evaluating Subgraph Query with Join

» Relation
Generation
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Q = R(uy,u;) 4 R(ug,uz) \ ,” Matching Candidate
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Notation:

A4 R(u:v,u’): The neighbors

of vin R(u,u’).
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Evaluating Subgraph Query with Join

» Relation
Generation
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Notation:

A4 R(u:v,u’): The neighbors

of vin R(u,u’).
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Evaluating Subgraph Query with Join
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Evaluating Subgraph Query with Join

Input » Relan_n
Generation
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Evaluating Subgraph Query with Join

Input » Relan_n
Generation
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Performance Factors

« The cardinality of the input relations.
* The effectiveness of the matching order.

* The efficiency of processing each intermediate result.
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RapidMatch: A Holistic Approach to Subgraph Queries

Optimize the matching order to reduce

the number of intermediate results.
Minimize the size of input

relations.

Accelerate the efficiency of
processing intermediate results.

Relation Join Plan Relation Result
Filter Generator Encoder Enumerator Output
___________ ,/’—_________________‘\\ / \
. vy 51 52 53 \
I v ! Failing Set
Vo Vg Vo Vg :
1 1
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| T T T D T T T P 7 T I O e O s W [ N N O i NN WY [N
Ve Vg Vg Vg iy Y2 UsUg U Uz U U | ‘ ,° S
Uy b ! Intersecti :u R
|07 Uy Uy 1 u, u, u, u, ! o 14y Uy Uy U
: v, vyov, v,
i u 4 v, V3 :i Vo, Vg vV, Vg ' Caching ! vz vs v4 v1 :
vy Vg Vs vyt Vg vy, Ve Vg | \ [T Ve Vs Ve Vsl
1 1
: v9 V7 v6 V3 : : u1 u2 E :: : i S t |\\___Ffs;u_lt_$__-’/,
| Vig Vs | Vig Ve ' : vz s V, Vs : ¥ : : Int - ti
\ ; i Vs V4 | 1 o ntersecti
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Relation Filter

* Full Reducer: A sequence of semi-joins to remove dangling tuples from an acyclic query.
« Dangling tuples: the tuple that cannot appear in any results.

Notation:
S The star rooted at a vertex u.

......................... R(u, 114)

Su, = R(uq,uz) = R(uq,us)
> R(uq,uy)

Results R(Sy,)

Query Graph Q.
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Relation Filter

* Method: Apply the full reducer on S, for each query vertex u along an order 6.
18t conduct the filter along the order of §, i.e., forward pruning.
« 2"d: repeat the filter along the reverse order of §, i.e., backward pruning.

R(uy,us3) R(uy,uy)

R(uq,u3)

u, us u, u, ’
V, Vv, v, Vg u, us
Ve V Ve V . v, V
— 6 78 1st round: Forward Pruning z 4
Ve V4 Vio Vs Ve V4
Ve v, 5 5; 53

up U ur () u; (A) u; ()
u u; V, Vs u; U
v; v, Ve v, v; v,
PR OO © ® © @G Rz
Vg V
108 Vio Yo u, Uz U, u, us u; u,
R(uz,u3) R(uq,uz) <

2"d round: Backward Pruning

103



Traditional Join Plan Generator

* Problem: Optimize the matching order to minimize the number of intermediate results.

« Existing Methods:
« Task 1. Estimate the cost given a matching order based on the cardinality estimation.
« Task 2: Find the order with the minimum cost in the plan space.
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Cardinality Estimation is Hard

« Cardinality Estimation: Estimate the number of a sub-structure of Q that appears in G.

How many times does the square appear

in G? @ @

Query Graph Q. Data Graph G. 105



Cardinality Estimation is Hard

« Cardinality Estimation: Estimate the number of a sub-structure of Q that appears in G.

How many times does the square appear
in G2 (19—

Hard question
to answer...

Query Graph Q. Data Graph G. 106



Plan Space is Huge

« Plan Space: A set containing all valid join orders.

The size of the plan space
grows exponentially with the
query size increasing...

The number of The size of the
guery vertices plan space

8 40,320

9 362,880

10 3,628,800
11 39,916,800

-
@ 16 20,922,789,888,000

Considering to extend ¢ by a vertex at
one time only.

Yg/
Query Graph Q.
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Considering a Simpler Problem
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Considering a Simpler Problem

Which one appear less frequently in G?

YUy

Query Graph Q.

Data Graph G.
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Considering a Simpler Problem

Prioritizing dense sub-structures of Q can reduce the
number of intermediate results.

Yg/
Query Graph Q. Data Graph G.
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Join Plan Generator based on Graph Density

« Decompose @ into several subgraphs with different densities.

» Construct a tree where each node is a subgraph and the edge denotes the containment
relationship.

« Traverse the tree to generate a matching order putting vertices in the dense part of Q at
the beginning of the matching order.
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Optimizing Matching Order based on Graph Density

* Nucleus Decomposition: Find dense subgraphs at different level of hierarchies.
« anucleus y is a connected subgraph satisfying density and connectivity constraints.
« anucleus forest T describes hierarchies based on nucleus containment relationship.

Density
Tree

xe x7 Y 112




Theoretical Guarantee

* For the query graph Q with an arbitrary structure, RapidMatch is worst-
case optimal, 1.e., the running time matches the maximum output size of Q.

 For the query graph Q with the acyclic structure, RapidMatch is instance
optimal, I.e., the running time matches the number of results in G.
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Experimental Setup

« Data Graphs: Seven real-world graphs with |E(G)| varying from 86K to 42M.

* Query Graphs: Both small and large query workloads.
« Small Queries: Seven queries widely used in previous work.

() () () (w () (W
shadid
shinhh

Gofy()
Qs Q7

A
)
« Large Queries: Ten query set each of which contains 200 queries.
* |V(Q)]| varied from 4 to 32.

 Counterparts:
« CFL [SIGMOD’16], DF [SIGMOD’19], GF [VLDB’19]
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Experiment Results

« Our solution outperforms state of the art by orders of magnitude.

Query Ti
=
<

_.- Our Solution: RapidMatch

Small queries on eu2005 dataset
V| = 862,664, |E| = 16,138,468, |Z| = 4
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Large queries on youtube dataset

Notation:

|Z|: The number of labels.

V| = 1,134,890, |E| = 2,987,624, |Z| = 25
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Summary

We study exploration-based and join-based methods and bridge the gap between them.

We propose a join-based engine that can efficiently evaluate various workloads.

We conduct extensive experiments with various workloads to evaluate the effectiveness
of our solution.

Datasets and source code available at github.com/RapidsAtHKUST/RapidMatch.
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PathEnum: Towards Real-Time Hop
Constraint s-t Path Enumeration

Shixuan Sun, Yuhang Chen, Bingsheng He, Bryan Hooi

National University of Singapore



Walk and Path

o A sequence of vertices (vy, vq, ...,v;) suchthatvl <i < l,e(v;_4,v;) €EE.
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Walk and Path

o A sequence of vertices (vy, vq, ...,v;) suchthatvl <i < l,e(v;_4,v;) €EE.

o A walk with no duplicate vertices.
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Walk and Path

o A sequence of vertices (vy, vq, ...,v;) suchthatvl <i < l,e(v;_4,v;) €EE.

o A walk with no duplicate vertices.
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Walk and Path

o A sequence of vertices (vy, vq, ...,v;) suchthatvl <i < l,e(v;_4,v;) €EE.

o A walk with no duplicate vertices.
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Problem Definition

* Hop constraint s-t path enumeration (HcPE):
o Find all paths P from s to t such that the length L(P) < k.
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Problem Definition

* Hop constraint s-t path enumeration (HcPE):

o Find all paths P from s to t such that the length L(P) < k.

Hop constraint

k=4
//-\ / \\
I N, N, |
S AV s WA
\\\.— l 1 2 3 \_/l
Py = (s,v1,02,1) N
& AUy A\Us
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Problem Definition

* Hop constraint s-t path enumeration (HcPE):

o Find all paths P from s to t such that the length L(P) < k.

Hop constraint

k=4
’ o
I
S
\\\_ / 1
PZ — (S' U1,V3, Uy, Us, t)
&
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Applications

o Money transactions among bank accounts.
o Find transaction paths between suspicious accounts.
o k Is relatively small (e.qg., k = 2).
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Applications

o Money transactions among bank accounts.
o Find transaction paths between suspicious accounts.
o k Is relatively small (e.qg., k = 2).

o Activities among individual users in online shopping.
o Find cycles triggered by activities between users.
o k Is relatively small (e.qg., k = 6).
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Challenges

» Applications have rigid real-time requirement.
e Search space can be large with k increasing.

« Query time of different queries varies greatly.
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Existing Solutions

o Enumerate all results by executing a backtracking search from s on G.
o Prune invalid paths with barriers.
o Update barriers dynamically to achieve polynomial delay.
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Barrier Initialization

Hop constraint

k =4 (vg, e Ol

] ; A v A v At) B=0
N B=1 A~
B=4 B =2
() S
1% 1% 1%
¥p — 3 g = Yp =1

Distance to t.
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DFS on Graph

Hop constraint . B =
k=4 < v

’\/ ; A v A v t\,‘BzO
N B=1 A~
B=4 B =2
) N
D AV AV
B =3 B = B =1
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DFS on Graph

B=1 k=2
Hop constraint . B =
= 4 O~ 2
’\/ ; A v A v t \,‘Bz()
T B=1 A~
B=4 B =2 .
""""" B(t)+1<r
(%) >@ A/175
B =73 B = B=1
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DFS on Graph

| B=1 b =2
Hop constraint R @ B = o
= 4 (s
'\ ; A v A v t\,‘BzO
T B=1 A~
B=4 B =2
- Bt)+1<r
(%) >@ A/’US
B =73 B = B=1
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DFS on Graph

B =1 v
Hop constraint > e
o @ Vg, @
'\/ ) (v v t \"B:O
SN B:1 \—/
B=4 i
----------- B(vz) + 1 > T
(%) >@ A/VS
B =3 b= vt
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Barrier Update

. B=1 B =0
Hop constraint J . @ B =
k =4 Vo Vs
] ; A v A v t\,‘BzO
T B=1 A"
B = 4 B =2
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Issues

 Barrier update incurs high overhead.

* Invalid edges involve in the search.

» Lack a model to optimize the search order.
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Issues

 Barrier update incurs high overhead.
 Invalid edges involve in the search.
» Lack a model to optimize the search order.

Fail to meet the rigid time-constraint in
real-world applications!
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Our Solution

PathEnum:
Keep the search simple-but-eficient

simple and efficient!



Design

light-weight
Input PathEnum Output
4 ) B | )
| preliminar Depth-first 1,
Graph G : Estimatior?/ Search on :
| Index i
L | Results
Query i y ! P(s,t,k,G)
q(s,t, k) Optimize Join Join on Index
! Order !
- oot mmmmmmemeeees “ 1\ J
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Design

light-weight
o I1(i): candidate vertices that can appear at position i of P from s to t.

Input PathEnum Output
/ \ o N o . / \
! N Y i Depth-first ).
Graoh '| Preliminary |+ @ Search on |
raph G | Estimation [ | |
| Jr i Index |
L ] | Results
Query i y ! i ! P(s,t,k,G)
q(s,t. k) i Optimize Join l Join on Index i
! Order ! !
\ Se . . M e L __- 4 \ /
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Design

 Build a light-weight index I by executing BFS from s and t.
o I1(i): candidate vertices that can appear at position i of P from s to t.
o I(v,i): neighbors v’ of v such that B(v') < i.

Input PathEnum
4 N[, i \
! . '( Depth-first ).
Graoh [ Preliminary ! Search on |
aph G |  Estimation : :
_ | \____Index |
Build : ! :
—> I
Query Index : : !
q(s, £, k) : Optimize Join l Join on Index i
! Order ! !
N U, N D — at

Output

/

~N

Results
P(s, t, k,G)
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Design

light-weight

o I1(i): candidate vertices that can appear at position i of P from s to t.
oI(v,i): neighbors v’ of v such that B(v") < i.
o Time complexity: O(|V| + |E]).

Input PathEnum
4 h el o \
! . '( Depth-first ).
Graoh [ Preliminary ! Search on |
raph G | Estimation : :
| AN Index |
—n ! :
Query i i i
q(s,t. k) : Optimize Join l Join on Index i
! Order ! !
\ ______________ M e L __- 7/

Output

-

~N

Results
P(s,t k,G)
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Design

Input PathEnum Output
4 N T | I
i(  Depth-first |,
Graph G »  Search on
. | Index :
Build | : : Results
Query Index / P(s,t,k, G)
a(s,t, ) [ | ] i
([ Join on Index |
\_ — ettt “ 1\ J
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Design

o Preliminary: roughly but quickly estimate the cost of the search.

Input PathEnum Output
4 N P s \
i Depth-first E
Graph G » Searchon |
. | Index :
Build | | Results
Query Index / : P(s,t k,G)
a(s, &, k) E[Join on Index]i
\- — e elelelelels N y

143



Design

o Preliminary: roughly but quickly estimate the cost of the search.

o Full-fledged: optimize the order with a dynamic programming method.

Input PathEnum
4 N RS \
{( Depth-first |,
Graph G : Search on !
| : Index |
Build ! :
Query Index / i
q(s, t, k) E[Join on Index]i
\ I /

Output

-

Results

\

P(s,t k,G)
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Design

o Preliminary: roughly but quickly estimate the cost of the search.

o Full-fledged: optimize the order with a dynamic programming method.

o Time complexity: 0(k?) and 0(k x |E]).

Input PathEnum
4 ) 4 \ o \
{( Depth-first |,
Graph G »  Search on !
| : Index |
Build ! :
Query Index / i
q(s,t, k) E[Join on Index]i
\ I /

Output

-

Results

\

P(s,t k,G)
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Design

Input PathEnum
4 e N \
[ Preliminary I :
Graph G [ Estimation ||
Build | !
Query Index ; v i
q(s, t, k) i Optimize Join |}
Order
\ ;} N /

Output

Results
P(s,t, k,G)
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Design

o Perform a DFS on the index from s.

Input PathEnum
4 e U, \
[ Preliminary I :
Graph G [ Estimation ||
Build | |
Query Index ; v i
q(s, t, k) i Optimize Join |}
Order
\_ D A )

Output

Results
P(s,t, k,G)
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Design

o Perform a DFS on the index from s.
o Perform binary joins on the index.

Input PathEnum
4 NN|[—— oo \
f Preliminary :
Graph G [ Estimation |:
Build | !
) |
Query Index ; v !
q(s, t, k) '| Optimize Join |}
Order
\_ D A )

Output

Results
P(s,t, k,G)
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Design

o Perform a DFS on the index from s.
o Perform binary joins on the index.

o Time complexity: O(k X |6y |) (6y: walks W from s to t such that L(W) < k).

Input PathEnum

4 N|l—— -
f Preliminary :
Graph G [ Estimation |:
Build | !
) |
Query Index ; v !
q(s, t, k) '| Optimize Join |}
Order
\_ ) T ’

Output

-

Results

\

P(s,t k,G)

149



Comparison of Search

« Search on the graph
o Foreachv € N(vg) = {t, v, }:
Update B(v).
If v is not visited and B(v) + 1 < r:
Move to v and continue the search.

B =2
Hop constraint B =1 . B =
k=4 2 D
! - N v A\ v At) B =0
N B=1 A~
B=4 B =2
N N
1Y AV AV

Budget r = 1.
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Comparison of Search

« Search on the graph
o Foreachv € N(vg) = {t, v, }:
Update B(v).
If v is not visited and B(v) + 1 < r:
Move to v and continue the search.

e Search on the index
oForeachv e I(vs,r—1) = {t}:
If v is not visited:
Move to v and continue the search.

B =2
Hop constraint B =1 . B =
k=4 2 D
! - N v A\ v At) B =0
N B=1 A~
B=4 B =2
N N
1Y AV AV

Budget r = 1. o1



Comparison of Search

« Search on the graph
o Foreachv € N(vg) = {t, v, }:
Update B(v).
If v is not visited and B(v) + 1 < r:
Move to v and continue the search.

Hop constraint B =1

e Search on the index
oForeachv e I(vs,r—1) = {t}:
If v is not visited:
Move to v and continue the search.

B =2

B = o
Vs @

k=4
S 5 v v P— Xt) B=0
B=4 B =2 . -
(77 ) N
1Y AV AV

Budget r = 1. 152



Comparison of Search Order

* Model a HCPE gquery as a chain join.
0 Q = Ry (ug, ug)XR,(ug, Uup) XR3(Up, Uz ) WR, (U3, Uy)
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Comparison of Search Order

* Model a HCPE query as a chain join.
0 Q == Ry(ug, ug) ™Ry (uy, up)XR3(uy, uz) ¥R, (uz, uy)

- -o

/ \ R3(uz, u3)

“\\\ R1 (uo, ul) RZ (UJ_; uZ)

N e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e =
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Comparison of Search Order

* Model a HCPE query as a chain join.

0 Q == Ry (ug, uy) ™Ry (uq, up) XR3(uy, uz) ¥R, (usz, uy)

[ Query Optimizer ]

_________________________________________________________

/\
N N

X R.>(u,,u
/ \ 3( 2 3) E iRl(uO'ul) Rz(u1;u2) R3(u2,U3) R4(u3'u4)i

“\\\ R1 (uo, ul) Rz (u]_; uZ)

N e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e =

__________________________________________________________



Recap

 Existing Solutions:

e PathEnum:
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Recap

 EXisting Solutions:
o Conduct filtering in the search to achieve polynomial delay.
o Perform a DFS on the graph and dynamically update the barrier.

e PathEnum:

oBuild a light-weight index to keep the search simple and efficient.
oSearch on the index with the guidance of a cost-based query optimizer.
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Recap

 EXisting Solutions:
o Conduct filtering in the search to achieve polynomial delay.
o Perform a DFS on the graph and dynamically update the barrier.
o O(k X |E| X |8p]), 6p denotes paths P from s to t such that L(P) < k.

e PathEnum:

oBuild a light-weight index to keep the search simple and efficient.
oSearch on the index with the guidance of a cost-based query optimizer.
o0(k X |6y/|), 6y denotes walks W from s to t such that L(W) < k.
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Experimental Setup

» Workload:
o 14 real-world graphs with |E| varying from 314K to 17M.
o 1000 queries randomly generated.
o k varies from 3 to 8 and the default value is 6.

 Metrics:

o Response time: the elapsed time on finding 1000 results.

o Query time: the elapsed time on completing the query.

e Counterpart:
o BC-DFS/BC-JOIN [VLDB’20].

* Open Source:
o https://github.com/Xtra-Computing/PathEnum
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Summary of Results

* Response time:
o 14.2 - 358.5X speedup.
o Less than 1 second (generally less than 100 ms).
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o Improve the throughput from around 10° to 108 results/per second.
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Summary of Results

o 14.2 - 358.5X speedup.
o Less than 1 second (generally less than 100 ms).

0 1.9 - 240.7X speedup.
o Improve the throughput from around 10° to 108 results/per second.

o From 0.1 ms to several minutes.
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Why are some gqueries time consuming?

10.0+1

o N B

log(Enumeration Time)
QO N U d
o U1 O Ww
log(Enumeration Time)
\

. N
-2.5
—-50 —61
2 4 6 8 10 12 14 16 18 20 22 0O 2 4 6 8 10 12 14
log(#Results) log(#Results)
Epinsion (|V| = 75K, |E| = 508K) Google (|V| = 876K, |E| = 5M)
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Why are some queries time consuming?

* Enumeration time is closely related to the number of results.
« Some queries have a huge number of results.

10.0+1

o N B

log(Enumeration Time)
QO N U d
o U1 O Ww
log(Enumeration Time)
\

—2.5 —4
-5.0 —6]
2 4 6 8 10 12 14 16 18 20 22 0O 2 4 6 8 10 12 14
log(#Results) log(#Results)
Epinsion (|V| = 75K, |E| = 508K) Google (|V| = 876K, |E| = 5M)
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Takeaway

* Keep the search simple and efficient.
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* Keep the search simple and efficient.
* Query-dependent index can significantly improve the performance.
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Takeaway

» Keep the search simple and efficient.
* Query-dependent index can significantly improve the performance.
* Query time is closely related to the number of results.
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Summary

e PathEnum, an efficient approach for HCPE.

« PathEnum’s key components include
oA light-weight index for input query.
oA two-level query optimizer with a join-based cost model.
oA search engine on the index.

« Up to two orders of magnitude speedup over state of the art.
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Future Work

 Scalability evaluation with a graph with 2 billion edges.
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Future Work

» Scalablility evaluation with a graph with 2 billion edges.
oAchieve a high throughput (up to 107 results/second).

oThe response time can be long because of the BFS (up to tens of
seconds)...

How to reduce the response time on
very large graphs?
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Outline

 Parallelization
* LIGHT: Parallelizing Subgraph Query Processing. ICPADS 2018 & ICDE 20109.
* ThunderRW: An In-Memory Graph Random Walk Engine. VLDB 2021.
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Multi(Many)-Core Era

42 Years of Microprocessor Trend Data

Transistors
(thousands)

| Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz)

Typical Power
41 (Watts)

Number of
Logical Cores

------------ D S R T

| | i i
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp
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Performance Gap Between Processor and Memory

100,000
TR | oo s e A ot v |

o 1,000

=

o

= Processor

- - Processor-Memory

- Performance Gap
10 |rererremer———— A e ———————
1

1980 1985 1990 1995 2000 2005 2010
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Modern Processor Architecture

CPU
Core Core Core Core
L1 L1 L1 L1
L2 L2 L2 L2
e — e — e — e —
L3
Main memaory

Figure source: https://teivah.medium.com/go-and-cpu-caches-af5d32cc5592.

L1 cache hit latency:
5cycles/ 2.6 GHz =1.92 ns

L2 cache hit latency:

11 cycles / 2.6 GHz = 4.23 ns Up to 50X
_ performance
L3 cache hit latency: gap!

34 cycles /2.6 GHz = 13.08 ns

Memory access latency:
L3 + Memory Access = ~60-100 ns
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Parallelizing Subgraph Query
Processing on a Single Machine

Shixuan Sun, Qiong Luo. ICPADS 2018.
Shixuan Sun, Yulin Che, Lipeng Wang, Qiong Luo. ICDE 2019.



Research Focus of Sequential Algorithms

» Optimize the matching order.

» Minimize the search breadth (branches) of each state.

Ir ‘. * Node: a psi

! ¢ 5 + Edge: a mapping _

' ul :i vl = vA V6 . C_ross: |nfea_5|ble mapping
: oy + Tick: a solution

T

i u2 :: :’v_Z__ ) _;'5_»‘: v2 v5 v2 v5 v2 v5

i : : X X X

i u3 :: v7,9 v7/ VS v7,9 7 \.v9 v7 v9

1 I! .

: X ‘\‘ X X X X

1 I!

T \ v6 v1,3,4 v1,3,4,6 v3 ,4,6

. X ' Compact v7

: li and v9 due to N % % N %

S space limit. 180



Research Focus of Sequential Algorithms

» Optimize the matching order.

» Minimize the search breadth (branches) of each state.

iu3

iu4

We focus on efficiently exploring the
tree in parallel.

* Node: a psi
* Edge: a mapping

vl v va v6 * Cross: infeasible mapping
* Tick: a solution
A _\;5_\: v2 vb v2 v5 v2 v5
X X %
v7/ V9 v7,9 7 \.Vv9 v7 v9
X X X X
v6 v1,3,4 v1,3,4,6 v3 46
Compact v7
and v9 due to N % % y o
space limit.
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Fine-Grained Parallelism

» Observation: Each node (state) can be expanded independently.
» Solution: Regard each node as the basic task unit.
» Cons:

» The fine-grained parallel method results in a large number of light weight tasks.

» The approach can incur a high communication overhead.

* Node: a psi
® I + Edge: a_lmapping _
ul : ________ vl = vA V6 . C_ross. |nfea_5|ble mapping
— - g \ * Tick: a solution
M : LM :
u2 : V2 v5 | ' v2 VSI: v2 v5 v2 v5
l X X 4
u3 : v7,9 v7/ VS v7,9 7 \.v9 v7 v9
: .
[ X \\‘ X X X X
|
u4 | \ v6 v1,3,4 v1,3,4,6 v3 4,6
I ' Compact v7 and
I 19 due to space v % % V %
|

limit.
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Coarse-Grained Parallelism

» Observation: The subtree rooted at a node can be explored independently.

» Solution: Regard the subtree rooted at M, denoted as H(M), as a parallel task. H(M)
can be further divided into more fine grained ones by taking part of the candidates,

denoted as H(M, [i: j]).

ul

u2

u3

u4

H(M)
Y
V2 v5
L Iv7,9
I X

_________

P e e e I e e e e e e e e e e T T T T —

My
v v4 v6
i v2 v5 v2 v5 v2 v5
X X

v7/ VS v7,9 7 \.v9 v7 v9

X X X X
v6 vl1,3,4 v1,3,4,6 v3 4,6
v X X v X

e o e e = - = - - - —
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Parallel Task

» We take coarse-grained tasks instead of fine-grained ones.
» Expand each subtree independently in a depth-first search method.
» Example: H, H and H,' can be explored concurrently by different workers.
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Load Balancing

» Itis hard to assign equal amounts of workload to workers at the beginning (static load
balancing), because H is constructed on the fly and irregular.

» We design a dynamic load balancing approach to resolve the load imbalance problem.
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Load Balancing

» Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

» Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.

» Busy workers will donate part of its task when they find that the queue is empty and
there are idle workers.
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Load Balancing

» Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

» Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.
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Load Balancing

» Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

» Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.

» Busy workers will donate part of its task when they find that the queue is empty and

there are idle workers.
Global Concurrent Queue

Push

-

Worker 1 Worker 2 Worker 3
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Load Balancing

» Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

» Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.

» Busy workers will donate part of its task when they find that the queue is empty and

there are idle workers.
Global Concurrent Queue

Pop

Worker 1 Worker 2 Worker 3
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We find that there Is a large
amount of redundant computation
In the unlabeled graph
enumeration.



Example of SE

M M

5

M, M, M,

Search tree of SE

Given u € V(q) and ¢, the
backward neighbors N () of
u contains the neighbors of u
positioned before u in .

Example: N¥(uy) = {ug, uy}
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Example of SE

u

U U

112

Query graph g

M, M, M,

Data graph G Search tree of SE Expand a partial result
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Observation One

®
Uy
Uy
by e N
u. N
2 e N '. The same set intersection N(vy) N N(v191) |
| is repeated in the computation of partial |
| ' results in the dashed rectangle for us;. i
Uy 7 ————————————————————————————————————————
)
Us
v Vv Vv Vv Vv V¥
M, M, M, M, M, M,
Data graph G Search tree of SE
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Observation Two

Data graph G

- (u)=N ()N (v

101)

101

Search path of SE

i Given partial results M; and M,, the

' same set intersection N(vy) N N(v4191)
| IS repeated in the computation of

| candidates of u; and us.

—_—_—— e — o
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Lazy Materialization

» We propose the lazy materialization subgraph enumeration algorithm, called
» Separate the computation and the materialization.
» Keep the order of the computation unchanged.
» Delay the materialization until some computation requires it.
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Example of Lazy Materialization

Data graph G Enumeration order
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Example of Lazy Materialization

0

[ | uo
Hl u3

”2 | uz
[ | ul
| u3

100
v
Data graph G Enumeration order

o (Uy, COMP)
(ug, MAT)
= (U, COMP)
(u,, MAT)
= (U, COMP)
(uq, MAT)
o (U3, COMP)
(u3, MAT)

v

Operation order
of SE
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Example of Lazy Materialization

0
- Up o (Uy, COMP) o (Uy, COMP)
u, “s (ug, MAT)
U, - U = (U, COMP) - (U, COMP)
(u,, MAT)
- Uy = (Ui, COMP) o (Ui, COMP)
(uq, MAT)
- U3 o (U3, COMP) o (U3, COMP)
(u3, MAT)
4 4 4
Data graph G Enumeration order Operation order Operation order

of SE of LIGHT
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Example of Lazy Materialization

- Up o (Uy, COMP) o (Uy, COMP)
u, “s D (ug, MAT)
U, - U = (U, COMP) m (U, COMP)
(uy, MAT)
- Uy = (Ui, COMP) o (Ui, COMP)
(uq, MAT)
- U3 o (U3, COMP) o (U3, COMP)
(u3, MAT)
4 4 4
Data graph G Enumeration order Operation order Operation order

of SE of LIGHT
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Example of Lazy Materialization

- Up o (Uy, COMP) o (Uy, COMP)
u, s > (up, MAT) (ug, MAT)
U, - U = (U, COMP) m (U, COMP)
(uy, MAT)
- Uy = (Ui, COMP) o (Ui, COMP)
(uq, MAT)
- U3 o (U3, COMP) o (U3, COMP)
(u3, MAT)
4 4 4
Data graph G Enumeration order Operation order Operation order

of SE of LIGHT
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Example of Lazy Materialization

0
- Up o (Uy, COMP) o (Uy, COMP)
u, U (ug, MAT) (ug, MAT)
U, - U = (U, COMP) - (U, COMP)
(uy, MAT)
- U o (U, COMP) = (U, COMP)
(uq, MAT)
- U3 o (U3, COMP) o (U3, COMP)
(u3, MAT)
4 4 4
Data graph G Enumeration order Operation order Operation order

of SE of LIGHT
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Example of Lazy Materialization

0
- Up o (Uy, COMP) o (Uy, COMP)
u, U (ug, MAT) (ug, MAT)
U, - U = (U, COMP) - (U, COMP)
(u,, MAT) (u,, MAT)
- U o (U, COMP) = (U, COMP)
(uq, MAT)
- U3 o (U3, COMP) o (U3, COMP)
(u3, MAT)
4 4 4
Data graph G Enumeration order Operation order Operation order

of SE of LIGHT
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Example of Lazy Materialization

0
- Up o (Uy, COMP) o (Uy, COMP)
u, s (up, MAT) (ug, MAT)
u, - U = (U, COMP) - (U, COMP)
(uy, MAT) (uy, MAT)
- Uy = (Ui, COMP) o (Ui, COMP)
(uq, MAT)
- U3 o (U3, COMP) = (U3, COMP)
(u3, MAT)
4 4 4
Data graph G Enumeration order Operation order Operation order

of SE of LIGHT
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Example of Lazy Materialization

0
- Up o (Uy, COMP) o (Uy, COMP)
u, U (ug, MAT) (ug, MAT)
U, - U = (U, COMP) - (U, COMP)
(u,, MAT) (u,, MAT)
- Uy o (U, COMP) o (U, COMP)
(uq, MAT)
- U3 o (U3, COMP) o (U3, COMP)
(u3, MAT)
4 4 4
Data graph G Enumeration order Operation order Operation order

of SE of LIGHT
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Example of Lazy Materialization

0

[ | uO
Hl U3

“2 | uz
| ul
| u3
v

Data graph G Enumeration order

o (Uy, COMP)
(ug, MAT)
= (U, COMP)
(u,, MAT)
= (U, COMP)
(uq, MAT)
o (U3, COMP)
(u3, MAT)

v

Operation order
of SE

o (Ug, COMP)
(ug, MAT)
- (U, COMP)
(u,, MAT)
= (U, COMP)

= (U3, COMP)
(uq, MAT)
(u3, MAT)

v

Operation order
of LIGHT
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Example of Lazy Materialization

®
Uy
Uy
u, Uy
U, )
U
Uy
M, M, M, M, M,
Data graph G Search tree of SE

(MAT ,u,)

(COMP ,u,)

(MAT ,u,)

(COMP u)

Search tree of LIGHT
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Observation Two

Data graph G

- (u)=N ()N (v

101)

101

Search path of SE

i Given partial results M; and M,, the

' same set intersection N(vy) N N(v4191)
| IS repeated in the computation of

| candidates of u; and us.

—_—_—— e — o
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MSC based Candidate Sets Computation

» Compute the candidate set of u € ¢ by utilizing candidate sets of u’ € X(u) where X(u)
contains all query vertices before u in ¢.

» Convert it to the minimum set cover (MSC) problem.
> Input: U=N;(w),S ={u}u € UU{NSW)IN @) S N/ () Au' € X(w)}.
» Output: The smallest sub-collection S’ of S whose union equals U.
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Example of MSC

Data graph G

v

Enumeration order

Nf(us) = {uo, uy}

X(u3z) = {ug, uq, uy}

——— e ——

S = {{Uo» uz}}

MSC Input: i N? (uy) I;
U={ugu} |

|

S = {{uo}r {uz}, {uo»uz}} :
MSC Output: :
|

|

Compute candidate
set of u,
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Example of MSC

] ®
u M M
0 r
Z(O VOI HO vO
1"1 1{3 ..........................................................
) CMo (uy)=N (vy) M CMo (,)=N(vy) M,
2
u, vmll i, V0o
Query graph g | e e \ 2R e
Cr, (ul):N(vO)ﬂN(VIOI) M, |CM] (ul):N(vO)ﬂN(VIOI) M,

u v u I
1 1 l 1 {V1—100}+

1 v 1 I
. 2 l 3 {Vl—loo} L

Data graph ¢ Search path of SE Search path of LIGHT
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Parallel Implementation

» Utilize both vector registers and multiple cores in modern CPUs.
» Parallelize set intersections with SIMD (Single-Instruction-Multiple-Data) instructions.
» Parallelize the exploration of the search tree with multi-threading.
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Experimental Setup

» Experimental Environment:
» Implemented in C++ and compiled with icpc 16.0.0.

» A machine equipped with 20 cores (2 Intel Xeon E5-2650 v3 @ 2.30GHz CPUSs),
64GB RAM and 1TB HDD.

» Use the AVX2 (256-bit) instruction set and execute with 64 threads.

» Data Graphs:

Dataset Name N (million) M (million) Memory (GB)
youtube vt 3.22 9.38 0.09
eu-2005 eu 0.86 19.24 0.15
live-journal lj 4.85 68.48 0.53
com-orkut ot 3.07 117.19 0.89
uk-2002 uk 18.52 298.11 2.30
friendster fs 65.61 1,806.07 13.71

213



Experimental Setup

» Query Graphs:

”0 ?."3 ”0
.".’1 ”2 .".n‘1
”0 <H1 .?."0 *&Hz
HO < ."."3 ‘Hl < ."."3
”0
u
”1
."r‘2 u
?."3
.Hd <~\H4

CZHI(HE'(H

u

u

?.’0*::1!1{.’!3{.’!3-(?.‘4
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Comparison with SE

» Tsp and Ty cyr are the serial execution time of SE and LIGHT respectively.
» Tspop and Ty cur+p are the parallel execution time of SE and LIGHT respectively.

> Overall Speedup = - fsE
LIGHT+P
Dataset yt lj
Pattern q2 q4 q6 q2 4 d6
Ts 645 | 176,181 | 4448 | 677 | 232,800 | 34,090
Tsgsp 22 4,034 115 159 | 6,949 | 1,425
Tienr | 31 | 3309 | 43 | 26 | 3497 | 285
T11GHT+P 0.3 56 0.9 0.9 80 8.7
Speedup | 2,150X | 3,146X | 4,942X | 752X | 2,910X | 3,918X

Comparison with SE (seconds).
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ThunderRW: An In-Memory Graph
Random Walk Engine

Shixuan Sun?, Yuhang Chen!, Shengliang Lu?, Bingsheng Hel, Yuchen Li?

!National University of Singapore
2Singapore Management University



Graph Random Walk (RW)

* Input:
» Agraph G
> A set Q of walkers

\_"\. > /'}
« Action:

» Each walker Q wanders in G

. independently
S ving: > Q randomly select a neighbor
e from the current residing
oona Lie vertex at each step
» Stop when satisfying a specific
O termination condition
La Joconde a

Washington

@ - Output:
» The walk sequence of each

walker in Q
217



Graph Random Walk (RW)

* Input:
» Agraph G
o City > Aset Q of walkers

?
T ] ‘/
kel O, paris Zea

<&
@ is located in .

~Jltea —

« Action:
» Each walker Q wanders in G
independently
S ving: > Q randomly select a neighbor
e from the current residing
Qo L. vertex at each step

al Bil(
@ @ PP > Stop when satisfying a specific
% termination condition
\ l La Joconde a
_ . y

%
%

Washington

% @ * Qutput:
» The walk sequence of each

walker in Q
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Usage of Graph Random Walk

« Graph processing applications
* Network community profiling
» Graphlet concentration

« Graph ranking applications
* Personalized page rank
« SimRank

« Graph embedding applications
* DeepWalk
 Node2Vec

219



Categorization of Graph Random Walks

* RW algorithms mainly differ in the neighbor selection step.
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Categorization of Graph Random Walks

* RW algorithms mainly differ in the neighbor selection step.

« Categorization based on transition probability p properties.
* Unbiased: p is the same.
« Static: p is fixed in execution. .
_ Biased
* Dynamic: p depends on the state of a walker.
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Properties of Graph Random Walk

* Input:
» Agraph G
» Aset Q of walkers

Limited Data Parallelism

within One Query

« Action:
» Each walker Q wanders in G

o e — ——— —— e oy,

> Stop when satisfying a specific
termination condition

e OQOutput:
» The walk sequence of each
walker in Q
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Properties of Graph Random Walk

‘ Im;u;: o Limited Data Parallelism
grap within One Quer
» Aset Q of walkers Query
* Action: : : :
(> Each walker Q wandersin G ' Massive Queries Executing
\___independently ! Simultaneously

» (Q randomly select a neighbor
from the current residing
vertex at each step

» Stop when satisfying a specific
termination condition

e OQOutput:
» The walk sequence of each
walker in Q
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Properties of Graph Random Walk

Method Front Bad Core Memory Retiring
End Spec. Bound Bound
BFS 11.6% 9.1%  20.8% 40.6% 18.0%
SSSP 9.1% 12.5% 24.9% 36.9% 16.6%
PPR 0.6% 0.7% 15.8% 73.1% 9.7%

DeepWalk 1.0% 3.9% 16.7% 69.7% 8.7%

Comparison of pipeline slot breakdown between
traditional graph algorithms and RW algorithms
(Measured by Intel VTune Profiler).

Limited Data Parallelism
within One Query

Massive Queries Executing

Simultaneously

Frequent Memory Stalls due to

Random Memory Access
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Properties of Graph Random Walk

Limited Data Parallelism
within One Query

ngO glGO ngOO
c c c ]
S 140 S 140 S 1000
[\1] [«}] a ]
L2120 L2120 £ 800]
v 1] ] 1
_EIOO ElOO E 6001 . . .
< 20 = 50, < 400 Massive Queries Executing
3 ] g 60] g 2001 Simultaneously
d 40 uowvw Vv T o S 40- n 0 = = o N 0 T o

> £ = 2 ¥ Eo< ¥ ¥ E X & =

£ z S 2 S 2 S

(a) Unbiased. (b) Static. (c) Dynamic.

Frequent Memory Stalls due to

Effectiveness of sampling methods on different types of
Do yb Random Memory Access

random walks. NAIVE: a simple uniform sampling
method; ITS: inverse transformation sampling; ALIAS:
alias sampling; REJ: rejection sampling; O-REJ: a

variant of rejection sampling. Significant Impact of Sampling

Methods in Neighbor Selection
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Characteristics of Graph Computing Frameworks

Think like a Vertex.

( N\ N ™
Gather (Reduce) Apply Scatter
Accumulate information Apply the accumulated Update adjacent edges
about neighborhood value to center vertex and vertices.
User Defined: User Defined: User Defined:
» Gather(QO—@ ) > 2 » Apply(@), 2) > D > Scatter(Q~@) > —
»IL DI, 235

Parallel : ' : ) E :
)

\

.

Update Edge Data &

Activate Neighbors
33 Yy,

[Figure Source: PowerGraph, OSDI'12].

Optimized for Single Query:

BFS, SSSP, CC etc.

Abstraction from View of Data:

vertex, edge, subgraph etc.

Exploiting Data Parallelism:

process vertices or edges in parallel.
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When Existing Graph Computing Frameworks Meet
Graph Random Walk...

Limited Data Parallelism
within One Query

Optimized for Single Query

Massive Queries Executing
Simultaneously

| _ Inherent
Abstraction from View of Data Conflicts

Frequent Memory Stalls due to
Random Memory Access

Exploiting Data Parallelism

Significant Impact of Sampling
Methods in Neighbor Selection
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ThunderRW: An In-Memory Graph Random Walk Engine

» Users can easily implement variant graph random walk based algorithms.

Hyperparameters

User-defined
Functions

WalkerType walker_type = WalkerType::Dynamic;
SamplingMethod sampling_method = SamplingMethod::0-REJ;
double Weight(Walker Q, Edge e) {

if (Q.length == @) return max(1.9 / a, 1.0, 1.0 / b);

else if (e.dst == Q.prev) return 1.0 / a;
else if (IsNeighbor(e.dst, Q.prev)) return 1.0;
else return 1.0 / b;

3

bool Update(Walker Q, Edge e) {
return Q.length == target_length;

3

double MaxWeight () {
return max(1.e / a, 1.0, 1.0 / b);

Listing 1: Node2Vec sample code.
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Step-Centric Model

» Think like a “walker” and factor a step into Gather-Move-Update (GMU) operations.
* Apply GMU operations to each walker in parallel.

Gather \ / Move \ / Update

Collect the relative chance of Sample an edge and move Q Update the state of Q given
each edge being selected. along the edge. the selected edge.
User-Defined Function: System Operation. User-Defined Function:
Weight + Update

A

o m ©

o—0—© o—0—© 0—9—©
9 9 9 J




Step-Interleaving Technigue

» Resolve cache stalls caused by irregular memory access by software prefetching.
* Modern CPUs can issue multiple outstanding memory request.

. Stage - - - Memory Access _L Switch of Stage

Sequential Execution
Step i of ._ ________ ._ ________ ._ ________ ._Ll N_o syfficienf computation
within a query to overlap the
Step i+1 0f Q "7  memory access latency.

A CPU Core

»
L

Time
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Step-Interleaving Technigue

» Resolve cache stalls caused by irregular memory access by software prefetching.
 Modern CPUs can issue multiple outstanding memory request.

. Stage - - - Memory Access _L Switch of Stage

Sequential Execution

stepiof Q[ -------- No sufficient computation
A CPU Core within a query to overlap the
memory access latency.
Stepiyof Q1 -~~~ """
Step i of Q[ 1~~~ "~
A CPU Core Step i3 of Q3

Step iy 0f Q4

Step Interleaving Execution
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Experiment Setup

Method PPR DeepWalk Node2Vec MetaPath
Baseline v v v v
e
S x X
ThunderRW v v v v

Workloads: 12 graphs with |E]|
varying from 1.85M to 1.81B.

Environment: A Linux Server
with a CPU with 10 cores and
220 GB RAM.
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Summary of Results

« Comparison with the baseline method:
* 8.6 —3333.1X speedup.

« Comparison with existing systems:
* 1.7 — 14. 6X speedup.

 Throughput:
3 x 108 in terms of steps per second.
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Evaluation of Step Interleaving

 Reduce memory bound from 73.1% to 15. 0%. Notation:
: wo/si: Disable step interleaving.
¢ Speed up queries by up to 4. 8X. w/si: Enable step interleaving.

* Improvement can be limited for high-order random walks.
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PPR DeepWalk Node2Vec MetaPath PPR DeepWalk Node2Vec MetaPath
(a) Pipeline slot breakdown. (b) Speedup.

Experiment results on livejournal dataset, |V| = 4.85M, |E| = 68.99M
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Summary

* We study the design and implementation of an in-memory graph RW engine.

« We propose ThunderRW, an efficient in-memory RW engine.
« Step-Centric Model: Abstract the computation from the local view of moving a step.
« Step-Interleaving Technigue: Hide memory latency by executing multiple queries alternatively.

» Source code publicly available at github.com/Xtra-Computing/ThunderRW.
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Conclusions

» Generic Benchmark Framework
» Metrics, baseline, design guidelines

« Algorithmic Optimization
A holistic approach to arbitrary subgraph queries
« Real-time processing for hop-constrained s-t path queries

« Hardware Utilization
« Parallelizing query evaluation with multi-cores and vector registers
« Efficient in-memory random walk engine with cache optimization
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Thanks!
Q&A



Hybrid Set Intersection Method

» The neighbor set of a vertex is stored as a In which each element is a 32-bit
Integer.
» Adopt a to ensure that the cost of a set intersection

operation is proportional to the size of the smaller set.
> Input: Two neighbor sets N(u) and N(v) where [N(u)| = |N(v)|.
» Qutput: N(u) N N(v)
1.1f IN(w)|/|N(v)| < threshold, then use the merge-based set
intersection. (O(|N(u)| + |N(v)|))
2.0therwise, use the Galloping search based method. (O(|N(v)| X

log [N(u)|))
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