
Accelerating In-Memory Subgraph Query
Processing on a Single Machine

Shixuan Sun

Senior Research Fellow, NUS

PhD, HKUST, 2020

Outline

• Benchmark
• Background

• In-Memory Subgraph Matching: An In-Depth Study. SIGMOD 2020.

• Algorithms
• RapidMatch: A Holistic Approach to Subgraph Query Processing. VLDB 2021.

• PathEnum: Towards Real-Time Hop Constraint 𝒔-𝒕 Path Enumeration. SIGMOD 2021.

• Parallelization
• LIGHT: Parallelizing Subgraph Query Processing. ICPADS 2018 & ICDE 2019.

• ThunderRW: An In-Memory Graph Random Walk Engine. VLDB 2021.

2

Why graphs?

3

Everything is Naturally Connected

4

Model Connected World as Structural Data

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

5

Model Connected World as Structural Data

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Query 1:
Find cities where Bob’s

friends visited.

6

Model Connected World as Structural Data

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Query 1:
Find cities where Bob’s

friends visited.

1. Find Bob’s
friends.

2. Find places where Bob’s friends
visited.

3. Find cities where Bob’s friends visited.

7

Model Connected World as Structural Data

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Query 1:
Find cities where Bob’s

friends visited.

Query 2:
Add a “like” connection

between Bob and cities where

Bob’s friends visited.

Like Create a table to maintain connections.

8

Hard to Capture Complex Connections

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Difficult to interpret deep

connections in data.

9

Hard to Capture Complex Connections

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Difficult to interpret deep

connections in data.

Poor performance for deep

connection analysis.

10

Hard to Capture Complex Connections

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Difficult to interpret deep

connections in data.

Poor performance for deep

connection analysis.

Sophisticated to represent rich

connections in data.

11

Model Connected World as Graphs

12

Model Connected World as Graphs

Query 1:
Find cities where Bob’s

friends visited.

Execute a depth-first search from Bob with the constraint

𝑓𝑟𝑖𝑒𝑛𝑑 → 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 → 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 on the label sequence.

13

Model Connected World as Graphs

Query 1:
Find cities where Bob’s

friends visited.

Execute a depth-first search from Bob with the constraint

𝑓𝑟𝑖𝑒𝑛𝑑 → 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 → 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 on the label sequence.

14

Model Connected World as Graphs

Query 1:
Find cities where Bob’s

friends visited.

Query 2:
Add a “like” connection

between Bob and cities where

Bob’s friends visited.

Insert an edge from Bob to Paris in the graph. The edge is

labeled as 𝑙𝑖𝑘𝑒𝑠.

15

Graph is an Effective Way for Us to Understand and
Manage Connected Data

High performance for

connection queries.

16

Graph is an Effective Way for Us to Understand and
Manage Connected Data

High performance for

connection queries.

Flexible to represent rich

connections in data.

17

Graph is an Effective Way for Us to Understand and
Manage Connected Data

High performance for

connection queries.

Flexible to represent rich

connections in data.

Deep insights into connections

among entities.

18

We Use Graphs Everyday and Everywhere

Road network.

19

We Use Graphs Everyday and Everywhere

Road network.

Social network.

20

We Use Graphs Everyday and Everywhere

Road network.

Social network.

Knowledge graph.

21

What is subgraph query processing?
Why is it important?

22

Retrieve Information from Graph Data

Road

Network

Social

Network

Web

Graph

Biological

Network

Transaction

Network

Map

Navigation

Social

Media

Fraud

Detection

Web

Crawler

Protein-

Interaction

23

Retrieve Information from Graph Data

Road

Network

Social

Network

Web

Graph

Biological

Network

Transaction

Network

Map

Navigation

Social

Media

Fraud

Detection

Web

Crawler

Protein-

Interaction

𝑢 𝑢 𝑣 𝑢 𝑣 𝑤
𝑢

𝑣
𝑤

𝑧

𝑢 𝑣

𝑤 𝑧Vertex Edge Path Tree

Subgraph

24

Subgraph Query Example

Query:
Enumerate all paths satisfying the

pattern 𝑓𝑟𝑖𝑒𝑛𝑑 → 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 → 𝑙𝑜𝑐𝑎𝑡𝑒𝑑.

Result set: {(Bob, Alice, Eiffel Tower, Paris)}.

Person Person

PlaceCity

friend

located

v
is

ite
d

25

Subgraph Matching

26

• A subgraph isomorphism (call a match for short) from a graph 𝑔 to another graph 𝑔′ is an
injective function 𝑀 from 𝑉(𝑔) to 𝑉 𝑔′ such that:

• ∀𝑢 ∈ 𝑉 𝑔 , 𝐿 𝑢 = 𝐿(𝑀(𝑢)) and ∀𝑒 𝑢, 𝑢′ ∈ 𝐸 𝑔 , 𝑒(𝑀 𝑢 ,𝑀(𝑢′)) ∈ 𝐸(𝑔′).

• Subgraph matching finds all matches from a query graph 𝑞 to a data graph 𝐺.

D

D

C B

u2

u3

u4

u1

A

u0

Query graph 𝑞

v7
C

D

v1v0
v3

D

Cv4

v8
v5 v6

D

C

D

v2

C C

BA BA

E

v9 v10
v11

v12 v13

Data graph 𝐺

{ 𝑢0, 𝑣0 , 𝑢1, 𝑣1 , 𝑢2, 𝑣4 ,
𝑢3, 𝑣10 , (𝑢4, 𝑣11)}

• The fundamental operation to retrieve information from graph data.

• The core functionality in graph database management systems.

• The primitives in many graph analysis operations.

Subgraph Matching

27

What are the challenges?

28

Challenges of Graph Data Processing

Large Volume:
Millions even trillions of edges.

29Figure source: Laxman Dhulipala. Provably Efficient and Scalable Shared-Memory Graph Processing. PhD Thesis. 2020.

Challenges of Graph Data Processing

Large Volume:
Millions even trillions of edges.

Complex Structure:
Skewness, local dense communities.

30

Challenges of Graph Data Processing

Large Volume:
Millions even trillions of edges.

Complex Structure:
Skewness, local dense communities.

Poor Hardware Utilization:
Load imbalance, irregular memory

access.

31

32
Figure source: https://github.com/eleurent/twitter-graph

• Develop efficient and effective techniques to accelerate subgraph query processing.

My Primary Research

Algorithmic
Optimization

Hardware
Utilization

Systematic
Evaluation

33

In-Memory Subgraph Matching: An In-
Depth Study

Shixuan Sun and Qiong Luo

Hong Kong University of Science and Technology

Preliminaries

• Deciding whether 𝑔′ contains 𝑔, i.e., the subgraph isomorphism problem, is NP-complete.

• Deciding whether 𝑔′ is identical to 𝑔, i.e., the graph isomorphism problem, belongs to NP,
but not known to be P or NP-complete.

35

Matching Order

• Given a query graph 𝑞, a matching order, denoted as 𝜋, is a permutation of vertices in 𝑞.
𝜋[𝑖] is the 𝑖th vertex in 𝜋, and 𝜋[𝑖:𝑗] is the set of vertices from index 𝑖 to 𝑗 in 𝜋.

• Example: 𝜋=(𝑢1,𝑢2,𝑢4,𝑢3), 𝜋[1]=𝑢1 and 𝜋[1:3]={𝑢1,𝑢2,𝑢4}.

36

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

Complete Candidate Set

• Given 𝑞 and 𝐺, a complete candidate set of a query vertex 𝑢, denoted as 𝑢. 𝐶, is a set of
vertices in 𝐺 such that if a mapping (𝑢, 𝑣) is in any subgraph isomorphism from 𝑞 to 𝐺,
then 𝑣 belongs to 𝑢. 𝐶.

• Example: 𝑢2. 𝐶 = 𝑣 𝑣 ∈ 𝑉 𝐺 𝑎𝑛𝑑 𝐿 𝑣 = 𝐿 𝑢2 = {𝑣2, 𝑣5, 𝑣8}.

37

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

Partial Subgraph Isomorphism (PSI)

• Given 𝑞, 𝐺 and 𝜋, a partial subgraph isomorphism 𝑓𝑖 is a subgraph isomorphism from
𝑞[𝜋[1: 𝑖]] to 𝐺 where 1 ≤ 𝑖 ≤ |𝑉(𝑞)|, and 𝑞[𝜋[1: 𝑖]] is a vertex induced subgraph of 𝑞
given 𝜋[1: 𝑖]. Specifically, 𝑓0 = {}, and 𝑓|𝑉(𝑞)| is a subgraph isomorphism from 𝑞 to 𝐺.

• Example: Suppose 𝜋 = (𝑢1, 𝑢2, 𝑢4, 𝑢3).

• 𝑓3 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , (𝑢4, 𝑣6)} is a partial subgraph isomorphism.

38

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

Feasible Mapping

• Given 𝑞, 𝐺, 𝜋, 𝑓𝑖 , 𝑢 = 𝜋[𝑖 + 1] and 𝑣 ∈ 𝑢. 𝐶 where 0 ≤ 𝑖 ≤ 𝑉 𝑞 − 1, a mapping (𝑢, 𝑣) is
feasible if 𝑓𝑖 can be extended to 𝑓𝑖+1 by adding the mapping (𝑢, 𝑣) to 𝑓𝑖. Otherwise, the
mapping is infeasible.

• Feasible condition:

1. 𝐿 𝑢 = 𝐿(𝑣);

2. 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑝𝑝𝑒𝑑;

3. 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢′ 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑚𝑎𝑝𝑝𝑒𝑑, 𝑖𝑓 𝑒 𝑢, 𝑢′ ∈
𝐸 𝑞 , 𝑡ℎ𝑒𝑛 𝑒 𝑣, 𝑓 𝑢′ ∈ 𝐺.

39

Example Feasible Mapping

⚫ Given 𝜋 = 𝑢1, 𝑢2, 𝑢4, 𝑢3 , 𝑢4. 𝐶 = 𝑣1, 𝑣3, 𝑣4, 𝑣6 𝑎𝑛𝑑 𝑓2 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 }:

• the mapping 𝑢4, 𝑣3 is infeasible: 𝑣3 has been mapped;

• the mapping 𝑢4, 𝑣4 is infeasible: 𝑒(𝑣3, 𝑣4) ∉ 𝐸(𝐺);

• the mapping (𝑢4, 𝑣6) is feasible;

• 𝑓2 can be extended to 𝑓3 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , (𝑢4, 𝑣6)} by adding the feasible
mapping 𝑢4, 𝑣6 .

40

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

Example Feasible Mapping

⚫ Given 𝜋 = 𝑢1, 𝑢2, 𝑢4, 𝑢3 , 𝑢4. 𝐶 = 𝑣1, 𝑣3, 𝑣4, 𝑣6 𝑎𝑛𝑑 𝑓2 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 }:

• the mapping 𝑢4, 𝑣3 is infeasible: 𝑣3 has been mapped;

• the mapping 𝑢4, 𝑣4 is infeasible: 𝑒(𝑣3, 𝑣4) ∉ 𝐸(𝐺);

• the mapping (𝑢4, 𝑣6) is feasible;

• 𝑓2 can be extended to 𝑓3 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , (𝑢4, 𝑣6)} by adding the feasible
mapping 𝑢4, 𝑣6 .

41

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

Graph Exploration based Approaches

42

⚫ General Idea:

Input: a query graph 𝑞 and a data graph 𝐺
Output: all subgraph isomorphisms from 𝑞 to 𝐺
1. Generate a matching order 𝜋;

2. Obtain a complete candidate set 𝑢. 𝐶 for every vertex 𝑢 ∈ 𝑉(𝑞);
3. Recursively enumerate all solutions by extending partial subgraph

isomorphisms iteratively along 𝜋.

Generate Matching Order and Candidate Sets

43

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

⚫ Generate a matching order:

• 𝜋 = the input order of query vertices.

• Example: 𝜋 = (𝑢1, 𝑢2, 𝑢3, 𝑢4).

⚫ Generate complete candidate sets:

• 𝑢. 𝐶 = 𝑣 𝑣 ∈ 𝑉 𝐺 , 𝐿 𝑣 = 𝐿 𝑢 𝑎𝑛𝑑 𝑑 𝑣 ≥ 𝑑 𝑢 ,
𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑢 ∈ 𝑉 𝑞 .

• Example: 𝑢1. 𝐶 = 𝑣1, 𝑣3, 𝑣4, 𝑣6 , 𝑢2. 𝐶 = 𝑣2, 𝑣5 , 𝑢3. 𝐶 =
𝑣7, 𝑣9 , 𝑢4. 𝐶 = 𝑣1, 𝑣3, 𝑣4, 𝑣6 .

Recursive Enumeration Process

44

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

u1

u2

u3

u4

𝝅 𝑓0
• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑓0 = {}

Backtracking Enumeration Process

45

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

u1

u2

u3

u4

𝝅

v1

𝑓0

𝑓0 = {}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

Backtracking Enumeration Process

46

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓1 = {(𝑢1, 𝑣1)}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

u1

u2

u3

u4

𝝅

v1

𝑓0

Backtracking Enumeration Process

47

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓1 = {(𝑢1, 𝑣1)}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

u1

u2

u3

u4

𝝅

v1

v2

𝑓0

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

Backtracking Enumeration Process

48

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓2 = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

u1

u2

u3

u4

𝝅

v1

v2

𝑓0

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

Backtracking Enumeration Process

49

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓2 = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

v2

𝑓0

Backtracking Enumeration Process

50

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓2 = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

×

v2

𝑓0

Backtracking Enumeration Process

51

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓2 = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

×

v2

𝑓0

v9

Backtracking Enumeration Process

52

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓2 = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

×

v2

×

v9

𝑓0

Backtracking Enumeration Process

53

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓2 = { 𝑢1, 𝑣1 , (𝑢2, 𝑣2)}

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v7

×

v2

×

v9

𝑓0

Backtracking Enumeration Process

54

𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

𝑢2. 𝐶 = 𝑣2, 𝑣5

𝑢3. 𝐶 = 𝑣7, 𝑣9

𝑢4. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}

A

B A

C

u1

u2 u4

u3

(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓1 = { 𝑢1, 𝑣1 }

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

u1

u2

u3

u4

𝝅

v1

v5

v7

×

v2

×

v9

𝑓0

Backtracking Enumeration Process

55

A

B A

C

u1

u2 u4

u3

A

B A

C

A

BA

C B

v1 v2 v3

v4
v5 v6

v7 v8 v9

(a). Query graph 𝑞 (b). Data graph 𝐺

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and
𝑣9 due to space

limit.

𝝅

Key Issues of Minimizing Search Space

56

⚫ Issue 1:

• Optimize the matching order to prune the invalid search

paths at an early stage.

⚫ Issue 2:

• Decrease the search breadth of every psi.

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and
𝑣9 due to space

limit.

𝝅

Representative Algorithms

57

Communities Methodologies Algorithms

Database

Backtracking Search

QuickSI, GADDI, SPath, GraphQL,

TurboIso, BoostIso, CFL, SGMatch,

CECI, DP-iso, PGX, PSM, STwig

Multi-way Join
EmptyHeaded, Graphflow, LogicBlox,

PostgreSQL, MonetDB, Neo4j, GpSM

Artificial Intelligence Backtracking Search
Ullmann, VF2, VF2++, VF3, LAD,

Glasgow

Bioinformatics Backtracking Search RI, VF2+, Grapes

Representative Algorithms

58

Communities Methodologies Algorithms

Database

Backtracking Search

QuickSI, GADDI, SPath, GraphQL,

TurboIso, BoostIso, CFL, SGMatch,

CECI, DP-iso, PGX, PSM, STwig

Multi-way Join
EmptyHeaded, Graphflow, LogicBlox,

PostgreSQL, MonetDB, Neo4j, GpSM

Artificial Intelligence Backtracking Search
Ullmann, VF2, VF2++, VF3, LAD,

Glasgow

Bioinformatics Backtracking Search RI, VF2+, Grapes

Category of Backtracking-Based Algorithms

 Direct-Enumeration: Directly explore 𝐺 to find all results.
➢ Example algorithms: QuickSI, RI and VF2++.

59

Category of Backtracking-Based Algorithms

 Direct-Enumeration: Directly explore 𝐺 to find all results.
➢ Example algorithms: QuickSI, RI and VF2++.

 Indexing-Enumeration: Construct indexes on 𝐺 and answer all queries with
the assistance of indexes.
➢ Example algorithms: GADDI and SGMatch.

60

Category of Backtracking-Based Algorithms

 Direct-Enumeration: Directly explore 𝐺 to find all results.
➢ Example algorithms: QuickSI, RI and VF2++.

 Indexing-Enumeration: Construct indexes on 𝐺 and answer all queries with
the assistance of indexes.
➢ Example algorithms: GADDI and SGMatch.

 Preprocessing-Enumeration: Generate candidate vertex sets per query at
runtime and evaluate the query based on candidate vertex sets.
➢ Widely used in the latest algorithms proposed in the database community.

➢ Example algorithms: GraphQL, TurboISO, CFL, DP-iso and CECI.

61

Observation

 Techniques in existing algorithms can be classified into several categories
each of which have the same goal.
➢ Example: Methods filtering candidates, methods optimizing the matching order.

62

Observation

 Techniques in existing algorithms can be classified into several categories
each of which have the same goal.
➢ Example: Methods filtering candidates, methods optimizing the matching order.

 The methods are closely related and all affect the evaluation performance.

63

Observation

 Techniques in existing algorithms can be classified into several categories
each of which have the same goal.
➢ Example: Methods filtering candidates, methods optimizing the matching order.

 The methods are closely related and all affect the evaluation performance.

 Previous studies regard each algorithm as a black box.
➢ Hide effectiveness of individual techniques.

64

Algorithm 1

Algorithm 2

Algorithm 3

Our Work

 Study individual techniques in the algorithms within a common framework.
➢ Compare and analyze individual techniques in existing algorithms.

➢ Conduct extensive experiments to evaluate the effectiveness of the techniques.

➢ Pinpoint techniques leading to the performance differences and make recommendation.

65

Our Work

 Study individual techniques in the algorithms within a common framework.
➢ Compare and analyze individual techniques in existing algorithms.

➢ Conduct extensive experiments to evaluate the effectiveness of the techniques.

➢ Pinpoint techniques leading to the performance differences and make recommendation.

 Select seven algorithms from three different communities.
➢ GraphQL [SIGMOD’08]

➢ CFL [SIGMOD’16]

➢ CECI [SIGMOD’19]

➢ DP-iso [SIGMOD’19]

➢ QuickSI [VLDB’08]

➢ RI [BMC Bioinformatics’13]

➢ VF2++ [Discrete Applied Mathematics’18]
66

The preprocessing-enumeration algorithms

The direct-enumeration algorithms

Common Framework

67

Filtering

Method

Ordering

Method

Enumeration

Method

Step 1

Step 2

Step 3

All Subgraphs of

𝐺 Identical to 𝑞
Query Graph 𝑞
Data Graph 𝐺

Input Output

Subgraph Matching

 Filtering Method: Given 𝑞 and 𝐺, minimize candidate vertex sets 𝐶(𝑢) for each 𝑢 ∈ 𝑉(𝑞).

➢ 𝐶(𝑢): A set of data vertices 𝑣 ∈ 𝑉(𝐺) that can be mapped to 𝑢.

 Ordering Method: Optimize the matching order 𝜑 based on the statistics of candidate vertex sets.

➢ 𝜑: A sequence of query vertices 𝑉(𝑞).

 Enumeration Method: Iteratively extend partial results 𝑀 by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑.

➢ 𝑀: A dictionary storing mappings between query vertices to data vertices.

𝐶(𝑢)

𝐶(𝑢)

𝜑

Principles of Our Study

 Study the performance of the algorithms from four aspects.

 When comparing one component, fix the others for fair comparison.

68

Filtering

Method

Ordering

Method

Enumeration

Method

Filtering

Method

Ordering

Method

Enumeration

Method

Filtering

Method

Ordering

Method

Enumeration

Method

Other

Optimization

Other

Optimization

Algorithm 1

Algorithm 2

Algorithm 3

Filtering Method

 Basic Method: Filtering 𝐶(𝑢) based on the label 𝐿(𝑢) and degree 𝑑(𝑢) of 𝑢,
i.e., 𝐶 𝑢 = {𝑣 ∈ 𝑉(𝐺)|𝐿 𝑣 = 𝐿(𝑢) ∧ 𝑑(𝑣) ≥ 𝑑(𝑢)}
➢ Take 𝑢2 and 𝑢3 as examples: 𝐶 𝑢2 = 𝑣1, 𝑣3, 𝑣5 , 𝐶 𝑢3 = 𝑣9, 𝑣10, 𝑣12

69

Filtering Method

 Filtering Rule: Given 𝑣 ∈ 𝐶(𝑢), if there exists 𝑢′ ∈ 𝑁 𝑢 such that 𝑁 𝑣 ∩
𝐶 𝑢′ = ∅, then 𝑣 can be removed from 𝐶(𝑢).

 Advanced Method: Filtering 𝐶(𝑢) with the rule along a sequence of 𝑢 ∈ 𝑉(𝑞).
➢ Example algorithms: GraphQL, CFL, CECI and DP-iso.

➢ Major differences: The filtering sequence and the number of rounds repeated.

70

Filtering Method

 Build an auxiliary data structure 𝐴 to record edges between candidate
vertex sets.
➢ Serve the cardinality estimation in the ordering method.

➢ Accelerate the subsequent enumeration method.

71𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoGraphQL

Ordering Method

 Adopt the greedy method that (1) selects a start vertex; and (2) iteratively
adds unselected query vertices to 𝜑 according to the cost estimation based
on 𝐶 and 𝐴.
➢ The major difference is the cost function.

➢ GraphQL: Select the vertex 𝑢 with the minimum |𝐶(𝑢)| at each step.

➢ CFL/DP-iso: Select the path of 𝑞 with the minimum number of embeddings in 𝐴 at each step.

72

Enumeration Method

 Extend partial results by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑 with the
assistance of 𝐴.
➢ GraphQL: Probe 𝐺 for all edge validation.

➢ CFL: Probe 𝐺 and 𝐴 for the non-tree and tree edge validation, respectively.

➢ DP-iso/CECI: Probe 𝐴 for all edge validation.

73

𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoQuery graph 𝑞 GraphQL

Enumeration Method

 Extend partial results by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑 with the
assistance of 𝐴.
➢ GraphQL: Probe 𝐺 for all edge validation.

➢ CFL: Probe 𝐺 and 𝐴 for the non-tree and tree edge validation, respectively.

➢ DP-iso/CECI: Probe 𝐴 for all edge validation.

74

𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoQuery graph 𝑞 GraphQL

Recommendation: Use the DP-iso/CECI-style

auxiliary data structure and enumeration method.

Optimization Method

 Failing set pruning: During the enumeration, utilize the information obtained
from the explored part of the search tree to prune invalid partial results.
➢ Proposed by DP-iso.

➢ Other algorithms can adopt the optimization as well.

75

Experimental Setup

➢ All algorithms are implemented in C++ and run on a machine with 2.3GHz CPUs and
128GB RAM.

➢ Real-world data graphs:

➢ Query sets:
➢ Query graphs are randomly extracted from the data graph.

➢ Each query set contains 200 connected graphs with the same number of vertices.

➢ 𝑄𝑖𝐷 and 𝑄𝑖𝑠 denote dense (𝑑(𝑞) ≥ 3) and sparse (𝑑 𝑞 < 3) query sets containing graphs with 𝑖 vertices.

➢ Each data graph has 1800 queries in total.

76

 Metrics: Num of Candidate Vertices =
1

|𝑄|
σ𝑞∈𝑄

1

|𝑉(𝑞)|
σ𝑢∈𝑉(𝑞) |𝐶(𝑢)| .

 Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.

Effectiveness of Filtering Methods

77

Varying datasets on dense query sets.

LDF: Label and degree filter.
GQL: Filtering of GraphQL.
CFL: Filtering of CFL.
CECI: Filtering of CECI.
DP: Filtering of DP-iso.
STEADY: Given 𝑣 ∈ 𝐶 𝑢 , it satisfies
that ∀𝑢′ ∈ 𝑁 𝑢 ,𝑁(𝑣) ∩ 𝐶(𝑢′) ≠ ∅.

 Metrics: Num of Candidate Vertices =
1

|𝑄|
σ𝑞∈𝑄

1

|𝑉(𝑞)|
σ𝑢∈𝑉(𝑞) |𝐶(𝑢)| .

 Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.

 Recommendation: Adopt the filtering method of GraphQL/CFL/DP-iso to prune candidate vertex sets.

Effectiveness of Filtering Methods

78

Varying datasets on dense query sets.

LDF: Label and degree filter.
GQL: Filtering of GraphQL.
CFL: Filtering of CFL.
CECI: Filtering of CECI.
DP: Filtering of DP-iso.
STEADY: Given 𝑣 ∈ 𝐶 𝑢 , it satisfies
that ∀𝑢′ ∈ 𝑁 𝑢 ,𝑁(𝑣) ∩ 𝐶(𝑢′) ≠ ∅.

Effectiveness of Ordering Methods

 Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt
candidate vertex sets of GraphQL.

 Metrics: Enumeration Time =
1

|𝑄|
σ𝑞∈𝑄𝑇(𝐴, 𝑞).

 Finding: GraphQL and RI are usually the most effective among competing methods.

79

Varying datasets on dense query sets.

QSI: Ordering of QuickSI.
GQL: Ordering of GraphQL.
CFL: Ordering of CFL.
CECI: Ordering of CECI.
DP: Ordering of DP-iso.
RI: Ordering of RI.
2PP: Ordering of VF2++.

GraphQL

RI

Effectiveness of Ordering Methods

 Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt
candidate vertex sets of GraphQL.

 Metrics: Enumeration Time =
1

|𝑄|
σ𝑞∈𝑄𝑇(𝐴, 𝑞).

 Finding: GraphQL and RI are usually the most effective among competing methods.

 Recommendation: Adopt GraphQL and RI on dense and sparse data graphs respectively.

80

Varying datasets on dense query sets.

QSI: Ordering of QuickSI.
GQL: Ordering of GraphQL.
CFL: Ordering of CFL.
CECI: Ordering of CECI.
DP: Ordering of DP-iso.
RI: Ordering of RI.
2PP: Ordering of VF2++.

GraphQL

RI

Effectiveness of Failing Set Pruning

 Setup: Continue with the experiments on ordering methods and enable the failing set pruning.

 Metrics: Count the number of unsolved queries within 5 minutes.

 Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all
competing algorithms can generate ineffective matching orders.

81Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing
algorithms can complete within 5 minutes.

Effectiveness of Failing Set Pruning

 Setup: Continue with the experiments on ordering methods and enable the failing set pruning.

 Metrics: Count the number of unsolved queries within 5 minutes.

 Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all
competing algorithms can generate ineffective matching orders.

 Recommendation: Enable failing set pruning for large queries.

82Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing
algorithms can complete within 5 minutes.

Summary

 Compare and analyze individual techniques in seven algorithms from
three communities within a common framework.

 Conduct extensive experiments to evaluate the effectiveness of each kind
of methods respectively.

 Report our new findings and make the recommendation through
experiments and analysis.

Checkout source code and datasets at: github.com/RapidsAtHKUST/SubgraphMatching

83

https://github.com/RapidsAtHKUST/SubgraphMatching

Outline

• Benchmark
• Background

• In-Memory Subgraph Matching: An In-Depth Study. SIGMOD 2020.

• Algorithms
• RapidMatch: A Holistic Approach to Subgraph Query Processing. VLDB 2021.

• PathEnum: Towards Real-Time Hop Constraint 𝒔-𝒕 Path Enumeration. SIGMOD 2021.

• Parallelization
• LIGHT: Parallelizing Subgraph Query Processing. ICPADS 2018 & ICDE 2019.

• ThunderRW: An In-Memory Graph Random Walk Engine. VLDB 2021.

84

RapidMatch: A Holistic Approach to
Subgraph Query Processing

Shixuan Sun1, Xibo Sun2, Yulin Che2, Qiong Luo2, Bingsheng He1

1National University of Singapore

2Hong Kong University of Science and Technology

Two Trends of Methods on the Same Problem

Exploration-based Methods

Native methods specifically designed for

subgraph query processing.

Evaluating subgraph queries with worst-

case optimal join (WCOJ).

Join-based Methods

Methodology

86

CFL [SIGMOD’16], DP-iso [SIGMOD’19] EmptyHeaded [SIGMOD’16], GraphFlow [VLDB’19]

Two Trends of Methods on the Same Problem

Exploration-based Methods

Native methods specifically designed for

subgraph query processing.

𝑄 with tens of vertices on 𝐺 having

thousands to millions of vertices.

Evaluating subgraph queries with worst-

case optimal join (WCOJ).

Join-based Methods

𝑄 with a few vertices (<10) on 𝐺 having

up to hundreds of millions of vertices.

Methodology

Workload

87

CFL [SIGMOD’16], DP-iso [SIGMOD’19] EmptyHeaded [SIGMOD’16], GraphFlow [VLDB’19]

Two Trends of Methods on the Same Problem

Exploration-based Methods

Native methods specifically designed for

subgraph query processing.

𝑄 with tens of vertices on 𝐺 having

thousands to millions of vertices.

Optimizing query plans with greedy

methods based on cardinality estimation.

Evaluating subgraph queries with worst-

case optimal join (WCOJ).

Join-based Methods

𝑄 with a few vertices (<10) on 𝐺 having

up to hundreds of millions of vertices.

Finding the optimal query plan based on

cardinality estimation in a plan space.

Methodology

Workload

Query Plan

Optimization

88

CFL [SIGMOD’16], DP-iso [SIGMOD’19] EmptyHeaded [SIGMOD’16], GraphFlow [VLDB’19]

Two Trends of Methods on the Same Problem

Exploration-based Methods

Native methods specifically designed for

subgraph query processing.

𝑄 with tens of vertices on 𝐺 having

thousands to millions of vertices.

Applying advanced filtering methods to

reduce the input graph size.

Optimizing query plans with greedy

methods based on cardinality estimation.

Evaluating subgraph queries with worst-

case optimal join (WCOJ).

Join-based Methods

𝑄 with a few vertices (<10) on 𝐺 having

up to hundreds of millions of vertices.

Simply utilizing labels to pruning the input

graph.

Finding the optimal query plan based on

cardinality estimation in a plan space.

Methodology

Workload

Input

Filtering

Query Plan

Optimization

89

CFL [SIGMOD’16], DP-iso [SIGMOD’19] EmptyHeaded [SIGMOD’16], GraphFlow [VLDB’19]

Problems Studied in Our Work

• Q1. Is one kind of methods inherently better than the other?

• A1. No, the complexity of result enumeration in state-of-the-art
exploration-based methods can match that of WCOJ.

90

Problems Studied in Our Work

• Q1. Is one kind of methods inherently better than the other?

• A1. No, the complexity of result enumeration in state-of-the-art
exploration-based methods can match that of WCOJ.

• Q2: How to design an approach to handle various workloads efficiently?

91

Evaluating Subgraph Query with Join

A

B

C D

u1

u2

u3

u4

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

Query Graph 𝑄.

Data Graph 𝐺.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

Subgraph

Query

Multi-way

Join

92

Evaluating Subgraph Query with Join

A

B

C D

u1

u2

u3

u4

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

Query Graph 𝑄.

Data Graph 𝐺.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

Input Relation

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{? }

{? }

𝑅(𝑢2: 𝑣3, 𝑢3)

Matching

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors
of 𝑣 in 𝑅(𝑢, 𝑢′).

93

Evaluating Subgraph Query with Join

A

B

C D

u1

u2

u3

u4

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

Query Graph 𝑄.

Data Graph 𝐺.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

Input Relation

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{? }

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

Matching

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors
of 𝑣 in 𝑅(𝑢, 𝑢′).

94

Evaluating Subgraph Query with Join

A

B

C D

u1

u2

u3

u4

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

Query Graph 𝑄.

Data Graph 𝐺.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

Input Relation

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{? }

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

Matching

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors
of 𝑣 in 𝑅(𝑢, 𝑢′).

95

Evaluating Subgraph Query with Join

A

B

C D

u1

u2

u3

u4

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

Query Graph 𝑄.

Data Graph 𝐺.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

Input Relation

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{𝑣1}

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

𝑅(𝑢1: 𝑣2, 𝑢4)

Matching

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors
of 𝑣 in 𝑅(𝑢, 𝑢′).

96

Evaluating Subgraph Query with Join

A

B

C D

u1

u2

u3

u4

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

Query Graph 𝑄.

Data Graph 𝐺.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

Input Relation

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{𝑣1}

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

𝑅(𝑢1: 𝑣2, 𝑢4)

Matching

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors
of 𝑣 in 𝑅(𝑢, 𝑢′).

97

Evaluating Subgraph Query with Join

A

B

C D

u1

u2

u3

u4

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

Query Graph 𝑄.

Data Graph 𝐺.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

u1 u2 u3 u4
v2 v3 v4 v1

Input Relation

Generation

Result

Enumeration
Output

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{𝑣1}

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

𝑅(𝑢1: 𝑣2, 𝑢4)

Matching

Order 𝜑

98

Evaluating Subgraph Query with Join

A

B

C D

u1

u2

u3

u4

D

C B C

v5v1 v7v3

D C

A C B A

v2 v4 v6 v8 v10

v9

Query Graph 𝑄.

Data Graph 𝐺.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

u1 u2 u3 u4
v2 v3 v4 v1

Input Relation

Generation

Result

Enumeration
Output

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{? }

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

Matching

Order 𝜑

99

Performance Factors

• The cardinality of the input relations.

• The effectiveness of the matching order.

• The efficiency of processing each intermediate result.

100

RapidMatch: A Holistic Approach to Subgraph Queries

Minimize the size of input

relations.

Optimize the matching order to reduce

the number of intermediate results.

Accelerate the efficiency of

processing intermediate results.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

u L

v1 D

v2 C

… …

v9 A

v10 C

u u’

v1 v2

v2 v1

… …

v9 v10

v10 v9

A

B

C D

u1

u2

u3

u4

G

Q

Selection

u1 u3
v2 v4

v6 v4

u2 u3
v3 v4

u1 u2
v2 v3

v6 v3

u1 u4
v2 v1

v6 v8

Full Reducer

A B

C

D

A

BC

B

AC

u1

u1

u1u4u2

u2

u2

u3

u3 u3

S1 S2 S3

A B

C

D

u1

u2
u4

u3

C
u1

QC QF

⋈

A

B

C D

u1

u2

u3

u4

Q

Optimiz
e Data
Layout

Re for e ∈E(QC)

Re for e ∈E(QF)

Intersecti
on

Caching

Failing Set
Pruning

Set
Intersecti

on

Build
Hash
Index

u1 u2 u3 u4
v2 v3 v4 v1

v6 v3 v4 v8

Results

Input

Relation

Filter

Join Plan

Generator

Relation

Encoder

Result

Enumerator Output

101

Relation Filter

Notation:
𝑆𝑢: The star rooted at a vertex 𝑢.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3)

𝑅(𝑢1, 𝑢4)

u1 u2 u3 u4
v2 v3 v4 v1

v6 v3 v4 v8

v6 v3 v7 v8

Results 𝑅(𝑆𝑢1)

A

B

C D

u1

u2

u3

u4

Query Graph 𝑄.

𝑆𝑢1 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢1, 𝑢4

• Full Reducer: A sequence of semi-joins to remove dangling tuples from an acyclic query.

• Dangling tuples: the tuple that cannot appear in any results.

102

Relation Filter

• Method: Apply the full reducer on 𝑆𝑢 for each query vertex 𝑢 along an order 𝛿.

• 1st: conduct the filter along the order of 𝛿, i.e., forward pruning.

• 2nd: repeat the filter along the reverse order of 𝛿, i.e., backward pruning.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

u2 u3
v3 v4

v9 v7

v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

A

B

C D

u1

u2

u3
u4

A B

C

D

A

BC

B

AC

u1

u1

u1u4u2

u2

u2

u3

u3 u3

S1 S2 S3

1st round: Forward Pruning

2nd round: Backward Pruning

u1 u3
v2 v4

v6 v4

u2 u3
v3 v4

u1 u2
v2 v3

v6 v3

u1 u4
v2 v1

v6 v8

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

103

Traditional Join Plan Generator

• Problem: Optimize the matching order to minimize the number of intermediate results.

• Existing Methods:

• Task 1: Estimate the cost given a matching order based on the cardinality estimation.

• Task 2: Find the order with the minimum cost in the plan space.

104

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Cardinality Estimation is Hard

• Cardinality Estimation: Estimate the number of a sub-structure of 𝑄 that appears in 𝐺.

Query Graph 𝑄. Data Graph 𝐺.

How many times does the square appear

in 𝐺? u3u1

u2 u4

105

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Cardinality Estimation is Hard

• Cardinality Estimation: Estimate the number of a sub-structure of 𝑄 that appears in 𝐺.

Query Graph 𝑄. Data Graph 𝐺.

How many times does the square appear

in 𝐺? u3u1

u2 u4

Hard question
to answer…

106

Plan Space is Huge

• Plan Space: A set containing all valid join orders.

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Query Graph 𝑄.

The size of the plan space
grows exponentially with the
query size increasing…

The number of

query vertices

The size of the

plan space

8 40,320

9 362,880

10 3,628,800

11 39,916,800

… …

16 20,922,789,888,000

Considering to extend 𝜑 by a vertex at

one time only.

107

Considering a Simpler Problem

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Query Graph 𝑄. Data Graph 𝐺.

u3u1

u2 u4 u6

u5u3

u4

Which one appear less frequently in 𝐺?

108

Considering a Simpler Problem

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Query Graph 𝑄. Data Graph 𝐺.

Which one appear less frequently in 𝐺?

u3u1

u2 u4 u6

u5u3

u4

The dense
one!

109

Considering a Simpler Problem

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Query Graph 𝑄. Data Graph 𝐺.

Which one appear less frequently in 𝐺?

u3u1

u2 u4 u6

u5u3

u4

The dense
one!

Prioritizing dense sub-structures of 𝑄 can reduce the
number of intermediate results.

110

Join Plan Generator based on Graph Density

• Decompose 𝑄 into several subgraphs with different densities.

• Construct a tree where each node is a subgraph and the edge denotes the containment
relationship.

• Traverse the tree to generate a matching order putting vertices in the dense part of 𝑄 at
the beginning of the matching order.

111

Optimizing Matching Order based on Graph Density

• Nucleus Decomposition: Find dense subgraphs at different level of hierarchies.

• a nucleus 𝜒 is a connected subgraph satisfying density and connectivity constraints.

• a nucleus forest 𝒯 describes hierarchies based on nucleus containment relationship.

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

𝑟 = 1, 𝑠 = 2 𝑟 = 2, 𝑠 = 3

𝑟 = 3, 𝑠 = 4

𝒯1,2 𝒯2,3 𝒯3,4
Density

Tree

𝒳1

𝒳2

𝒳3 𝒳4

𝒳5

𝒳6 𝒳7

𝒳1

𝒳2

𝒳3

𝒳4

𝒳5

𝒳7

𝒳6 112

Theoretical Guarantee

• For the query graph 𝑄 with an arbitrary structure, RapidMatch is worst-
case optimal, i.e., the running time matches the maximum output size of 𝑄.

• For the query graph 𝑄 with the acyclic structure, RapidMatch is instance
optimal, i.e., the running time matches the number of results in 𝐺.

113

• Data Graphs: Seven real-world graphs with |𝐸(𝐺)| varying from 86𝐾 to 42𝑀.

• Query Graphs: Both small and large query workloads.
• Small Queries: Seven queries widely used in previous work.

• Large Queries: Ten query set each of which contains 200 queries.

• |𝑉(𝑄)| varied from 4 to 32.

• Counterparts:
• CFL [SIGMOD’16], DF [SIGMOD’19], GF [VLDB’19]

Experimental Setup

114

Experiment Results

• Our solution outperforms state of the art by orders of magnitude.

Our Solution: RapidMatch

Small queries on eu2005 dataset

𝑉 = 862,664, |E| = 16,138,468, |Σ| = 4

Large queries on youtube dataset

𝑉 = 1,134,890, |E| = 2,987,624, |Σ| = 25
Notation:
|Σ|: The number of labels. 115

Summary

• We study exploration-based and join-based methods and bridge the gap between them.

• We propose a join-based engine that can efficiently evaluate various workloads.

• We conduct extensive experiments with various workloads to evaluate the effectiveness
of our solution.

• Datasets and source code available at github.com/RapidsAtHKUST/RapidMatch.

116

PathEnum: Towards Real-Time Hop
Constraint 𝒔-𝒕 Path Enumeration

Shixuan Sun, Yuhang Chen, Bingsheng He, Bryan Hooi

National University of Singapore

Walk and Path

• Walk 𝑊:

oA sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑙) such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝑒(𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸.

118

Walk and Path

• Walk 𝑊:

oA sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑙) such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝑒(𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸.

• Path 𝑃:

oA walk with no duplicate vertices.

119

• Walk 𝑊:

oA sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑙) such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝑒(𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸.

• Path 𝑃:

oA walk with no duplicate vertices.

Walk and Path

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7

120

𝑊1 = (𝑠, 𝑣0, 𝑡)

• Walk 𝑊:

oA sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑙) such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝑒(𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸.

• Path 𝑃:

oA walk with no duplicate vertices.

Walk and Path

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7

121

𝑊2 = (𝑠, 𝑣0, 𝑣6, 𝑣0, 𝑡)

• Hop constraint 𝑠-𝑡 path enumeration (HcPE):

oFind all paths 𝑃 from 𝑠 to 𝑡 such that the length 𝐿(𝑃) ≤ 𝑘.

Problem Definition

122

• Hop constraint 𝑠-𝑡 path enumeration (HcPE):

oFind all paths 𝑃 from 𝑠 to 𝑡 such that the length 𝐿(𝑃) ≤ 𝑘.

Problem Definition

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4

1 2 3

123

𝑃1 = (𝑠, 𝑣1, 𝑣2, 𝑡)

• Hop constraint 𝑠-𝑡 path enumeration (HcPE):

oFind all paths 𝑃 from 𝑠 to 𝑡 such that the length 𝐿(𝑃) ≤ 𝑘.

Problem Definition

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4

1

2

3 4

5

124

𝑃2 = (𝑠, 𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑡)

Applications

• Detecting money laundering [FATF’13, AAAI’20]

oMoney transactions among bank accounts.

oFind transaction paths between suspicious accounts.

o𝑘 is relatively small (e.g., 𝑘 = 2).

125

Applications

• Detecting money laundering [FATF’13, AAAI’20]

oMoney transactions among bank accounts.

oFind transaction paths between suspicious accounts.

o𝑘 is relatively small (e.g., 𝑘 = 2).

• Detecting e-commerce merchant fraud [VLDB’18]

oActivities among individual users in online shopping.

oFind cycles triggered by activities between users.

o𝑘 is relatively small (e.g., 𝑘 = 6).

126

Challenges

• Applications have rigid real-time requirement.

• Search space can be large with 𝑘 increasing.

• Query time of different queries varies greatly.

127

Existing Solutions

• A depth-first search (DFS) based framework [VLDB’20].

oEnumerate all results by executing a backtracking search from 𝑠 on 𝐺.

oPrune invalid paths with barriers.

oUpdate barriers dynamically to achieve polynomial delay.

128

Barrier Initialization

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Distance to 𝑡.

129

DFS on Graph

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Budget 𝑟 = 1.

130

DFS on Graph

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Budget 𝑟 = 1.

𝐵 𝑡 + 1 ≤ 𝑟.

131

DFS on Graph

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Budget 𝑟 = 1.

𝐵 𝑡 + 1 ≤ 𝑟.

132

DFS on Graph

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Budget 𝑟 = 1.

𝐵 𝑣2 + 1 > 𝑟.

133

Barrier Update

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = ∞

134

Issues

• Barrier update incurs high overhead.

• Invalid edges involve in the search.

• Lack a model to optimize the search order.

135

Issues

• Barrier update incurs high overhead.

• Invalid edges involve in the search.

• Lack a model to optimize the search order.

136

Fail to meet the rigid time-constraint in

real-world applications!

Our Solution

137

PathEnum:

Keep the search simple but efficient

simple and efficient!

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Build a light-weight index 𝐼 by executing BFS from 𝑠 and 𝑡.

138

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Build a light-weight index 𝐼 by executing BFS from 𝑠 and 𝑡.

o 𝐼 𝑖 : candidate vertices that can appear at position 𝑖 of 𝑃 from 𝑠 to 𝑡.

139

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Build a light-weight index 𝐼 by executing BFS from 𝑠 and 𝑡.

o 𝐼 𝑖 : candidate vertices that can appear at position 𝑖 of 𝑃 from 𝑠 to 𝑡.

o 𝐼 𝑣, 𝑖 : neighbors 𝑣′ of 𝑣 such that 𝐵(𝑣′) ≤ 𝑖.

140

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Build a light-weight index 𝐼 by executing BFS from 𝑠 and 𝑡.

o 𝐼 𝑖 : candidate vertices that can appear at position 𝑖 of 𝑃 from 𝑠 to 𝑡.

o 𝐼 𝑣, 𝑖 : neighbors 𝑣′ of 𝑣 such that 𝐵(𝑣′) ≤ 𝑖.

oTime complexity: 𝑂(𝑉 + |𝐸|).

141

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Optimize the search order with a join-based model.

142

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Optimize the search order with a join-based model.

oPreliminary: roughly but quickly estimate the cost of the search.

143

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Optimize the search order with a join-based model.

oPreliminary: roughly but quickly estimate the cost of the search.

oFull-fledged: optimize the order with a dynamic programming method.

144

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Optimize the search order with a join-based model.

oPreliminary: roughly but quickly estimate the cost of the search.

oFull-fledged: optimize the order with a dynamic programming method.

oTime complexity: 𝑂(𝑘2) and 𝑂(𝑘 × |𝐸|).

145

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Search on the index based on the guidance of the optimizer.

146

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Search on the index based on the guidance of the optimizer.

oPerform a DFS on the index from 𝑠.

147

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Search on the index based on the guidance of the optimizer.

oPerform a DFS on the index from 𝑠.

oPerform binary joins on the index.

148

Design

Graph 𝐺

Build

Index

Preliminary

Estimation

Optimize Join

Order

Depth-first

Search on

Index

Join on Index

Query

𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Search on the index based on the guidance of the optimizer.

oPerform a DFS on the index from 𝑠.

oPerform binary joins on the index.

oTime complexity: 𝑂 𝑘 × |𝛿𝑊| (𝛿𝑊: walks 𝑊 from 𝑠 to 𝑡 such that 𝐿(𝑊) ≤ 𝑘).

149

Comparison of Search

• Search on the graph

o For each 𝑣 ∈ 𝑁 𝑣5 = 𝑡, 𝑣2 :

Update 𝐵(𝑣).

If 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and 𝐵 𝑣 + 1 ≤ 𝑟:

Move to 𝑣 and continue the search.

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1
𝐵 = 2

Budget 𝑟 = 1. 150

Comparison of Search

• Search on the graph

o For each 𝑣 ∈ 𝑁 𝑣5 = 𝑡, 𝑣2 :

Update 𝐵(𝑣).

If 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and 𝐵 𝑣 + 1 ≤ 𝑟:

Move to 𝑣 and continue the search.

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 2

Budget 𝑟 = 1.

• Search on the index
oFor each 𝑣 ∈ 𝐼 𝑣5, 𝑟 − 1 = 𝑡 :

If 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑:

Move to 𝑣 and continue the search.

151

𝐵 = 1

Comparison of Search

• Search on the graph

o For each 𝑣 ∈ 𝑁 𝑣5 = 𝑡, 𝑣2 :

Update 𝐵(𝑣).

If 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and 𝐵 𝑣 + 1 ≤ 𝑟:

Move to 𝑣 and continue the search.

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 2

Budget 𝑟 = 1.

• Search on the index
oFor each 𝑣 ∈ 𝐼 𝑣5, 𝑟 − 1 = 𝑡 :

If 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑:

Move to 𝑣 and continue the search.

152

𝐵 = 1

Comparison of Search Order

• Model a HcPE query as a chain join.

o𝑄 ≔ 𝑅1 𝑢0, 𝑢1 ⋈𝑅2 𝑢1, 𝑢2 ⋈𝑅3 𝑢2, 𝑢3 ⋈𝑅4 𝑢3, 𝑢4

153

Comparison of Search Order

• Model a HcPE query as a chain join.

o𝑄 ≔ 𝑅1 𝑢0, 𝑢1 ⋈𝑅2 𝑢1, 𝑢2 ⋈𝑅3 𝑢2, 𝑢3 ⋈𝑅4 𝑢3, 𝑢4

𝑅1(𝑢0, 𝑢1) 𝑅2(𝑢1, 𝑢2)

⋈ 𝑅3(𝑢2, 𝑢3)

⋈ 𝑅4(𝑢3, 𝑢4)

⋈

𝑂𝑈𝑇
DFS

154

Comparison of Search Order

• Model a HcPE query as a chain join.

o𝑄 ≔ 𝑅1 𝑢0, 𝑢1 ⋈𝑅2 𝑢1, 𝑢2 ⋈𝑅3 𝑢2, 𝑢3 ⋈𝑅4 𝑢3, 𝑢4

𝑅1(𝑢0, 𝑢1) 𝑅2(𝑢1, 𝑢2)

⋈ 𝑅3(𝑢2, 𝑢3)

⋈ 𝑅4(𝑢3, 𝑢4)

⋈

𝑂𝑈𝑇

𝑅1(𝑢0, 𝑢1) 𝑅2(𝑢1, 𝑢2)

⋈

⋈

𝑂𝑈𝑇

𝑅3(𝑢2, 𝑢3) 𝑅4(𝑢3, 𝑢4)

⋈

Query Optimizer

DFS Binary Join

155

Recap

156

• Existing Solutions:

• PathEnum:

Recap

157

• Existing Solutions:
o Conduct filtering in the search to achieve polynomial delay.

• PathEnum:
oBuild a light-weight index to keep the search simple and efficient.

Recap

158

• Existing Solutions:
o Conduct filtering in the search to achieve polynomial delay.

o Perform a DFS on the graph and dynamically update the barrier.

• PathEnum:
oBuild a light-weight index to keep the search simple and efficient.

oSearch on the index with the guidance of a cost-based query optimizer.

Recap

159

• Existing Solutions:
o Conduct filtering in the search to achieve polynomial delay.

o Perform a DFS on the graph and dynamically update the barrier.

o 𝑂(𝑘 × |𝐸| × |𝛿𝑃|), 𝛿𝑃 denotes paths 𝑃 from 𝑠 to 𝑡 such that 𝐿(𝑃) ≤ 𝑘.

• PathEnum:
oBuild a light-weight index to keep the search simple and efficient.

oSearch on the index with the guidance of a cost-based query optimizer.

o𝑂(𝑘 × |𝛿𝑊|), 𝛿𝑊 denotes walks 𝑊 from 𝑠 to 𝑡 such that 𝐿(𝑊) ≤ 𝑘.

Experimental Setup

• Workload:
o 14 real-world graphs with |𝐸| varying from 314𝐾 to 17𝑀.

o 1000 queries randomly generated.

o 𝑘 varies from 3 to 8 and the default value is 6.

• Metrics:
o Response time: the elapsed time on finding 1000 results.

o Query time: the elapsed time on completing the query.

• Counterpart:
o BC-DFS/BC-JOIN [VLDB’20].

• Open Source:
o https://github.com/Xtra-Computing/PathEnum

160

Summary of Results

• Response time:
o 14.2 - 358.5X speedup.

o Less than 1 second (generally less than 100 ms).

161

Summary of Results

• Response time:
o 14.2 - 358.5X speedup.

o Less than 1 second (generally less than 100 ms).

• Query time:
o 1.9 - 240.7X speedup.

o Improve the throughput from around 105 to 108 results/per second.

162

Summary of Results

• Response time:
o 14.2 - 358.5X speedup.

o Less than 1 second (generally less than 100 ms).

• Query time:
o 1.9 - 240.7X speedup.

o Improve the throughput from around 105 to 108 results/per second.

• Query time variance:
o From 0.1 ms to several minutes.

163

Why are some queries time consuming?

Epinsion (𝑉 = 75𝐾, 𝐸 = 508𝐾) Google (𝑉 = 876𝐾, 𝐸 = 5𝑀)

164

Why are some queries time consuming?

Epinsion (𝑉 = 75𝐾, 𝐸 = 508𝐾) Google (𝑉 = 876𝐾, 𝐸 = 5𝑀)

• Enumeration time is closely related to the number of results.

• Some queries have a huge number of results.

165

Takeaway

• Keep the search simple and efficient.

166

Takeaway

• Keep the search simple and efficient.

• Query-dependent index can significantly improve the performance.

167

Takeaway

• Keep the search simple and efficient.

• Query-dependent index can significantly improve the performance.

• Query time is closely related to the number of results.

168

Summary

•PathEnum, an efficient approach for HcPE.

•PathEnum’s key components include
oA light-weight index for input query.

oA two-level query optimizer with a join-based cost model.

oA search engine on the index.

• Up to two orders of magnitude speedup over state of the art.

169

Future Work

•Scalability evaluation with a graph with 2 billion edges.

170

Future Work

•Scalability evaluation with a graph with 2 billion edges.
oAchieve a high throughput (up to 107 results/second).

171

Future Work

•Scalability evaluation with a graph with 2 billion edges.
oAchieve a high throughput (up to 107 results/second).

oThe response time can be long because of the BFS (up to tens of
seconds)…

172

Future Work

•Scalability evaluation with a graph with 2 billion edges.
oAchieve a high throughput (up to 107 results/second).

oThe response time can be long because of the BFS (up to tens of
seconds)…

173

How to reduce the response time on

very large graphs?

Selected References

[FATF’13] Financial Action Task Force. 2013. FATF Report: Money Laundering and Terrorist
Financing Vulnerabilities of Legal Professionals. Paris: FATF (2013).

[AAAI’20] Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang,
and Xueqi Cheng. 2020. FlowScope: Spotting Money Laundering Based on Graphs. In AAAI.
4731–4738.

[VLDB’18] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-time constrained cycle detection in large dynamic graphs. Proceedings
of the VLDB Endowment 11, 12 (2018).

[VLDB’20] You Peng, Ying Zhang, Xuemin Lin, Wenjie Zhang, Lu Qin, and Jingren Zhou. 2019.
Towards bridging theory and practice: hop-constrained st simple path enumeration. Proceedings
of the VLDB Endowment 13, 4 (2019).

174

Outline

• Benchmark
• Background

• In-Memory Subgraph Matching: An In-Depth Study. SIGMOD 2020.

• Algorithms
• RapidMatch: A Holistic Approach to Subgraph Query Processing. VLDB 2021.

• PathEnum: Towards Real-Time Hop Constraint 𝒔-𝒕 Path Enumeration. SIGMOD 2021.

• Parallelization
• LIGHT: Parallelizing Subgraph Query Processing. ICPADS 2018 & ICDE 2019.

• ThunderRW: An In-Memory Graph Random Walk Engine. VLDB 2021.

175

Multi(Many)-Core Era

176

Performance Gap Between Processor and Memory

177

Modern Processor Architecture

178

L1 cache hit latency:

5 cycles / 2.6 GHz = 1.92 ns

L2 cache hit latency:

11 cycles / 2.6 GHz = 4.23 ns

L3 cache hit latency:

34 cycles / 2.6 GHz = 13.08 ns

Memory access latency:

L3 + Memory Access = ~60-100 ns

Figure source: https://teivah.medium.com/go-and-cpu-caches-af5d32cc5592.

Up to 50X

performance

gap!

Parallelizing Subgraph Query
Processing on a Single Machine

Shixuan Sun, Qiong Luo. ICPADS 2018.

Shixuan Sun, Yulin Che, Lipeng Wang, Qiong Luo. ICDE 2019.

➢ Optimize the matching order.

➢ Minimize the search breadth (branches) of each state.

180

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7
and 𝑣9 due to

space limit.

𝞅

Research Focus of Sequential Algorithms

➢ Optimize the matching order.

➢ Minimize the search breadth (branches) of each state.

181

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7
and 𝑣9 due to

space limit.

𝞅

Research Focus of Sequential Algorithms

We focus on efficiently exploring the

tree in parallel.

Fine-Grained Parallelism

➢ Observation: Each node (state) can be expanded independently.

➢ Solution: Regard each node as the basic task unit.

➢ Cons:

➢ The fine-grained parallel method results in a large number of light weight tasks.

➢ The approach can incur a high communication overhead.

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and
𝑣9 due to space

limit.

𝞅

𝑀 𝑀′

182

Coarse-Grained Parallelism

➢ Observation: The subtree rooted at a node can be explored independently.

➢ Solution: Regard the subtree rooted at 𝑀, denoted as 𝐻(𝑀), as a parallel task. 𝐻(𝑀)
can be further divided into more fine grained ones by taking part of the candidates,
denoted as 𝐻(𝑀, [𝑖: 𝑗]).

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

𝞅

𝑀

𝐻(𝑀)

𝐻(𝑀0, [2: 4])

𝑀0

183

Parallel Task

➢ We take coarse-grained tasks instead of fine-grained ones.

➢ Expand each subtree independently in a depth-first search method.

➢ Example: 𝐻, 𝐻′ and 𝐻1′ can be explored concurrently by different workers.

184

Load Balancing

➢ It is hard to assign equal amounts of workload to workers at the beginning (static load
balancing), because 𝐻 is constructed on the fly and irregular.

➢ We design a dynamic load balancing approach to resolve the load imbalance problem.

185

Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and
there are idle workers.

186

Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and
there are idle workers.

Busy Busy Busy

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

187

Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and
there are idle workers.

Busy Busy Idle

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

188

Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and
there are idle workers.

Busy Busy Idle

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

Push
Wake Up

189

Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and
there are idle workers.

Busy Busy idle

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

Pop

190

We find that there is a large
amount of redundant computation

in the unlabeled graph
enumeration.

191

Example of SE

192

Query graph 𝑞

Data graph 𝐺 Search tree of SE

Enumeration Order

Partial Result

Given 𝑢 ∈ 𝑉(𝑞) and 𝜑, the

backward neighbors 𝑁+
𝜑
(𝑢) of

𝑢 contains the neighbors of 𝑢
positioned before 𝑢 in 𝜑.

Example: 𝑁+
𝜑
𝑢1 = {𝑢0, 𝑢2}

Example of SE

193

Query graph 𝑞

Data graph 𝐺 Search tree of SE Expand a partial result

Step 1.

Step 2.

Observation One

194

Query graph 𝑞

Data graph 𝐺 Search tree of SE

The same set intersection 𝑁(𝑣0) ∩ 𝑁(𝑣101)
is repeated in the computation of partial
results in the dashed rectangle for 𝑢3.

Observation Two

195

Query graph 𝑞

Data graph 𝐺 Search path of SE

Given partial results 𝑀1 and 𝑀2, the
same set intersection 𝑁(𝑣0) ∩ 𝑁(𝑣101)
is repeated in the computation of
candidates of 𝑢1 and 𝑢3.

Lazy Materialization

➢ We propose the lazy materialization subgraph enumeration algorithm, called LIGHT.

➢ Separate the computation and the materialization.

➢ Keep the order of the computation unchanged.

➢ Delay the materialization until some computation requires it.

196

Example of Lazy Materialization

197

𝑢0

𝑢2

𝑢1

𝑢3

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

198

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

Operation order

of SE

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

199

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

Operation order

of LIGHT
Operation order

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

200

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

Operation order

of LIGHT
Operation order

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

201

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢0, 𝑀𝐴𝑇)

Operation order

of LIGHT
Operation order

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

202

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢0, 𝑀𝐴𝑇)

Operation order

of LIGHT
Operation order

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

203

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

Operation order

of LIGHT
Operation order

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

204

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

Operation order

of LIGHT
Operation order

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

205

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

Operation order

of LIGHT
Operation order

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

206

𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

Operation order

of LIGHT
Operation order

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺

Example of Lazy Materialization

207

Search tree of LIGHT

Query graph 𝑞

Data graph 𝐺 Search tree of SE

Observation Two

208

Query graph 𝑞

Data graph 𝐺 Search path of SE

Given partial results 𝑀1 and 𝑀2, the
same set intersection 𝑁(𝑣0) ∩ 𝑁(𝑣101)
is repeated in the computation of
candidates of 𝑢1 and 𝑢3.

MSC based Candidate Sets Computation

➢ Compute the candidate set of 𝑢 ∈ 𝜑 by utilizing candidate sets of 𝑢′ ∈ 𝑋(𝑢) where 𝑋(𝑢)
contains all query vertices before 𝑢 in 𝜑.

➢ Convert it to the minimum set cover (MSC) problem.

➢ Input: 𝑈 = 𝑁+
𝜑
(𝑢), 𝑆 = 𝑢′ 𝑢′ ∈ 𝑈 ∪ {𝑁+

𝜑
(𝑢′)|𝑁+

𝜑
(𝑢′) ⊆ 𝑁+

𝜑
𝑢 ∧ 𝑢′ ∈ 𝑋(𝑢)}.

➢ Output: The smallest sub-collection 𝑆′ of 𝑆 whose union equals 𝑈.

209

Example of MSC

210

𝑢0

𝑢2

𝑢1

𝑢3

Compute candidate

set of 𝑢3

𝑈 = 𝑢0, 𝑢2

𝑆 = {𝑢0}, {𝑢2}, 𝑢0, 𝑢2

Enumeration order

Query graph 𝑞

Data graph 𝐺

𝑁+
𝜑
(𝑢3) = 𝑢0, 𝑢2

𝑋(𝑢3) = 𝑢0, 𝑢1, 𝑢2

MSC Input:

MSC Output:

𝑆′ = 𝑢0, 𝑢2

𝐶𝑀(𝑢3) = 𝐶𝑀(𝑢1)

𝑁+
𝜑
(𝑢1)

Example of MSC

211

Search path of SE Search path of LIGHT

Query graph 𝑞

Data graph 𝐺

Parallel Implementation

➢ Utilize both vector registers and multiple cores in modern CPUs.

➢ Parallelize set intersections with SIMD (Single-Instruction-Multiple-Data) instructions.

➢ Parallelize the exploration of the search tree with multi-threading.

212

Experimental Setup

➢ Experimental Environment:

➢ Implemented in C++ and compiled with icpc 16.0.0.

➢ A machine equipped with 20 cores (2 Intel Xeon E5-2650 v3 @ 2.30GHz CPUs),
64GB RAM and 1TB HDD.

➢ Use the AVX2 (256-bit) instruction set and execute with 64 threads.

➢ Data Graphs:

213

Experimental Setup

➢ Query Graphs:

214

Comparison with SE

215

Comparison with SE (seconds).

➢ 𝑇𝑆𝐸 and 𝑇𝐿𝐼𝐺𝐻𝑇 are the serial execution time of SE and LIGHT respectively.

➢ 𝑇𝑆𝐸+𝑃 and 𝑇𝐿𝐼𝐺𝐻𝑇+𝑃 are the parallel execution time of SE and LIGHT respectively.

➢ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑆𝐸

𝑇𝐿𝐼𝐺𝐻𝑇+𝑃
.

ThunderRW: An In-Memory Graph
Random Walk Engine

Shixuan Sun1, Yuhang Chen1, Shengliang Lu1, Bingsheng He1, Yuchen Li2

1National University of Singapore

2Singapore Management University

Graph Random Walk (RW)

217

• Input:
➢ A graph 𝐺

➢ A set 𝑸 of walkers

• Action:
➢ Each walker 𝑄 wanders in 𝐺

independently

➢ 𝑄 randomly select a neighbor

from the current residing

vertex at each step

➢ Stop when satisfying a specific

termination condition

• Output:
➢ The walk sequence of each

walker in 𝑸

Graph Random Walk (RW)

• Input:
➢ A graph 𝐺

➢ A set 𝑸 of walkers

• Action:
➢ Each walker 𝑄 wanders in 𝐺

independently

➢ 𝑄 randomly select a neighbor

from the current residing

vertex at each step

➢ Stop when satisfying a specific

termination condition

• Output:
➢ The walk sequence of each

walker in 𝑸

218

Usage of Graph Random Walk

• Graph processing applications

• Network community profiling

• Graphlet concentration

• Graph ranking applications

• Personalized page rank

• SimRank

• Graph embedding applications

• DeepWalk

• Node2Vec

219

Categorization of Graph Random Walks

• RW algorithms mainly differ in the neighbor selection step.

220

𝑝(𝑒1)

𝑝(𝑒2)

𝑝(𝑒3)

Transition Probability

Categorization of Graph Random Walks

• RW algorithms mainly differ in the neighbor selection step.

• Categorization based on transition probability 𝒑 properties.

• Unbiased: 𝑝 is the same.

• Static: 𝑝 is fixed in execution.

• Dynamic: 𝑝 depends on the state of a walker.

221

𝑝(𝑒1)

𝑝(𝑒2)

𝑝(𝑒3)

Biased

Transition Probability

Properties of Graph Random Walk

Limited Data Parallelism

within One Query

222

• Input:
➢ A graph 𝐺

➢ A set 𝑸 of walkers

• Action:
➢ Each walker 𝑄 wanders in 𝐺

independently

➢ 𝑄 randomly select a neighbor

from the current residing

vertex at each step

➢ Stop when satisfying a specific

termination condition

• Output:
➢ The walk sequence of each

walker in 𝑸

Properties of Graph Random Walk

Limited Data Parallelism

within One Query

223

• Input:
➢ A graph 𝐺

➢ A set 𝑸 of walkers

• Action:
➢ Each walker 𝑄 wanders in 𝐺

independently

➢ 𝑄 randomly select a neighbor

from the current residing

vertex at each step

➢ Stop when satisfying a specific

termination condition

• Output:
➢ The walk sequence of each

walker in 𝑸

Massive Queries Executing

Simultaneously

Properties of Graph Random Walk

Limited Data Parallelism

within One Query

224

Massive Queries Executing

Simultaneously

Method Front
End

Bad
Spec.

Core
Bound

Memory
Bound

Retiring

BFS 11.6% 9.1% 20.8% 40.6% 18.0%

SSSP 9.1% 12.5% 24.9% 36.9% 16.6%

PPR 0.6% 0.7% 15.8% 73.1% 9.7%

DeepWalk 1.0% 3.9% 16.7% 69.7% 8.7%

Comparison of pipeline slot breakdown between

traditional graph algorithms and RW algorithms

(Measured by Intel VTune Profiler).

Frequent Memory Stalls due to

Random Memory Access

Properties of Graph Random Walk

Limited Data Parallelism

within One Query

225

Massive Queries Executing

Simultaneously

Frequent Memory Stalls due to

Random Memory Access

Significant Impact of Sampling

Methods in Neighbor Selection

Effectiveness of sampling methods on different types of

random walks. NAÏVE: a simple uniform sampling

method; ITS: inverse transformation sampling; ALIAS:

alias sampling; REJ: rejection sampling; O-REJ: a

variant of rejection sampling.

Characteristics of Graph Computing Frameworks

Optimized for Single Query:
BFS, SSSP, CC etc.

Abstraction from View of Data:
vertex, edge, subgraph etc.

Exploiting Data Parallelism:
process vertices or edges in parallel.

[Figure Source: PowerGraph, OSDI’12].

Think like a Vertex.

226

When Existing Graph Computing Frameworks Meet
Graph Random Walk…

Optimized for Single Query

Abstraction from View of Data

Exploiting Data Parallelism

Graph Random

Walk
227

Limited Data Parallelism

within One Query

Massive Queries Executing

Simultaneously

Frequent Memory Stalls due to

Random Memory Access

Significant Impact of Sampling

Methods in Neighbor Selection

Inherent
Conflicts

ThunderRW: An In-Memory Graph Random Walk Engine

• Users can easily implement variant graph random walk based algorithms.

228

Hyperparameters

User-defined

Functions

Step-Centric Model

• Think like a “walker” and factor a step into Gather-Move-Update (GMU) operations.

• Apply GMU operations to each walker in parallel.

𝑄

2

1 3

4

Gather
Collect the relative chance of

each edge being selected.

User-Defined Function:
• Weight

𝑄

2

1 3

4

Move
Sample an edge and move 𝑄

along the edge.

System Operation.

𝑄

1 3

4

Update
Update the state of 𝑄 given

the selected edge.

User-Defined Function:
• Update

229

Step-Interleaving Technique

• Resolve cache stalls caused by irregular memory access by software prefetching.

• Modern CPUs can issue multiple outstanding memory request.

Stage Memory Access Switch of Stage

Sequential Execution

Step 𝑖 of 𝑄
A CPU Core

Step 𝑖+1 of 𝑄

No sufficient computation
within a query to overlap the
memory access latency.

230

Time

Step-Interleaving Technique

• Resolve cache stalls caused by irregular memory access by software prefetching.

• Modern CPUs can issue multiple outstanding memory request.

Stage Memory Access Switch of Stage

Sequential Execution

Step 𝑖 of 𝑄

Step Interleaving Execution

Time
Step 𝑖1 of 𝑄1

Step 𝑖2 of 𝑄2

Step 𝑖3 of 𝑄3

Step 𝑖4 of 𝑄4

A CPU Core
Step 𝑖+1 of 𝑄

A CPU Core

No sufficient computation
within a query to overlap the
memory access latency.

231

Experiment Setup

232

Method PPR DeepWalk Node2Vec MetaPath

Baseline ✔ ✔ ✔ ✔

KnightKing
[SOSP’19]

✔ ✔ ✔ ╳

GraphWalker
[USENIX ATC’20]

✔ ╳ ╳ ╳

ThunderRW ✔ ✔ ✔ ✔

• Workloads: 12 graphs with |𝐸|
varying from 1.85𝑀 to 1.81𝐵.

• Environment: A Linux Server

with a CPU with 10 cores and

220 𝐺𝐵 RAM.

Summary of Results

• Comparison with the baseline method:

• 𝟖. 𝟔 − 𝟑𝟑𝟑𝟑. 𝟏𝑿 speedup.

• Comparison with existing systems:

• 𝟏. 𝟕 − 𝟏𝟒. 𝟔𝑿 speedup.

• Throughput:

• 𝟑 × 𝟏𝟎𝟖 in terms of steps per second.

233

Evaluation of Step Interleaving

234

• Reduce memory bound from 𝟕𝟑. 𝟏% to 𝟏𝟓. 𝟎%.

• Speed up queries by up to 𝟒. 𝟖𝑿.

• Improvement can be limited for high-order random walks.

Experiment results on livejournal dataset, 𝑉 = 4.85𝑀, 𝐸 = 68.99𝑀

Notation:
wo/si: Disable step interleaving.
w/si: Enable step interleaving.

Summary

• We study the design and implementation of an in-memory graph RW engine.

• We propose ThunderRW, an efficient in-memory RW engine.

• Step-Centric Model: Abstract the computation from the local view of moving a step.

• Step-Interleaving Technique: Hide memory latency by executing multiple queries alternatively.

• Source code publicly available at github.com/Xtra-Computing/ThunderRW.

235

Conclusions

• Generic Benchmark Framework

• Metrics, baseline, design guidelines

• Algorithmic Optimization

• A holistic approach to arbitrary subgraph queries

• Real-time processing for hop-constrained s-t path queries

• Hardware Utilization

• Parallelizing query evaluation with multi-cores and vector registers

• Efficient in-memory random walk engine with cache optimization

236

Thanks!
Q&A

237

Hybrid Set Intersection Method

➢ The neighbor set of a vertex is stored as a sorted array in which each element is a 32-bit
integer.

➢ Adopt a hybrid set intersection method to ensure that the cost of a set intersection
operation is proportional to the size of the smaller set.

➢ Input: Two neighbor sets 𝑁(𝑢) and 𝑁 𝑣 where |𝑁(𝑢)| ≥ |𝑁(𝑣)|.

➢Output: 𝑁(𝑢) ∩ 𝑁(𝑣)

1.If 𝑁 𝑢 /|𝑁 𝑣 | ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then use the merge-based set
intersection. (𝑂(𝑁 𝑢 + |𝑁(𝑣)|))

2.Otherwise, use the Galloping search based method. (𝑂(|𝑁(𝑣)| ×
log |𝑁(𝑢)|))

238

