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Why graphs?
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Everything is Naturally Connected 
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Model Connected World as Structural Data

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship
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Model Connected World as Structural Data

CityPlace

PaintPeople Artist
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InterestFriendship

Query 1:
Find cities where Bob’s 

friends visited. 
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Model Connected World as Structural Data

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Query 1:
Find cities where Bob’s 

friends visited. 

1. Find Bob’s 
friends.

2. Find places where Bob’s friends 
visited.

3. Find cities where Bob’s friends visited.
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Model Connected World as Structural Data

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Query 1:
Find cities where Bob’s 

friends visited. 

Query 2:
Add a “like” connection 

between Bob and cities where 

Bob’s friends visited. 

Like Create a table to maintain connections.
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Hard to Capture Complex Connections

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Difficult to interpret deep 

connections in data.
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Hard to Capture Complex Connections

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Difficult to interpret deep 

connections in data.

Poor performance for deep 

connection analysis.
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Hard to Capture Complex Connections

CityPlace

PaintPeople Artist

Film

Visit

InterestFriendship

Difficult to interpret deep 

connections in data.

Poor performance for deep 

connection analysis.

Sophisticated to represent rich 

connections in data.
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Model Connected World as Graphs
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Model Connected World as Graphs

Query 1:
Find cities where Bob’s 

friends visited. 

Execute a depth-first search from Bob with the constraint 

𝑓𝑟𝑖𝑒𝑛𝑑 → 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 → 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 on the label sequence.
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Model Connected World as Graphs

Query 1:
Find cities where Bob’s 

friends visited. 

Execute a depth-first search from Bob with the constraint 

𝑓𝑟𝑖𝑒𝑛𝑑 → 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 → 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 on the label sequence.
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Model Connected World as Graphs

Query 1:
Find cities where Bob’s 

friends visited. 

Query 2:
Add a “like” connection 

between Bob and cities where 

Bob’s friends visited. 

Insert an edge from Bob to Paris in the graph. The edge is 

labeled as 𝑙𝑖𝑘𝑒𝑠.
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Graph is an Effective Way for Us to Understand and 
Manage Connected Data

High performance for 

connection queries.
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Graph is an Effective Way for Us to Understand and 
Manage Connected Data

High performance for 

connection queries.

Flexible to represent rich 

connections in data.
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Graph is an Effective Way for Us to Understand and 
Manage Connected Data

High performance for 

connection queries.

Flexible to represent rich 

connections in data.

Deep insights into connections 

among entities.
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We Use Graphs Everyday and Everywhere

Road network.
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We Use Graphs Everyday and Everywhere

Road network.

Social network.
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We Use Graphs Everyday and Everywhere

Road network.

Social network.

Knowledge graph.
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What is subgraph query processing? 
Why is it important?
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Retrieve Information from Graph Data

Road 

Network

Social 

Network

Web

Graph
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Network
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Map

Navigation

Social

Media

Fraud

Detection

Web

Crawler

Protein-

Interaction
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Subgraph Query Example

Query:
Enumerate all paths satisfying the 

pattern 𝑓𝑟𝑖𝑒𝑛𝑑 → 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 → 𝑙𝑜𝑐𝑎𝑡𝑒𝑑. 

Result set: {(Bob, Alice, Eiffel Tower, Paris)}.

Person Person

PlaceCity

friend

located

v
is

ite
d
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Subgraph Matching
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• A subgraph isomorphism (call a match for short) from a graph 𝑔 to another graph 𝑔′ is an 
injective function 𝑀 from 𝑉(𝑔) to 𝑉 𝑔′ such that:

• ∀𝑢 ∈ 𝑉 𝑔 , 𝐿 𝑢 = 𝐿(𝑀(𝑢)) and ∀𝑒 𝑢, 𝑢′ ∈ 𝐸 𝑔 , 𝑒(𝑀 𝑢 ,𝑀(𝑢′)) ∈ 𝐸(𝑔′).

• Subgraph matching finds all matches from a query graph 𝑞 to a data graph 𝐺.
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• The fundamental operation to retrieve information from graph data.

• The core functionality in graph database management systems.

• The primitives in many graph analysis operations.

Subgraph Matching
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What are the challenges?
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Challenges of Graph Data Processing

Large Volume:
Millions even trillions of edges.

29Figure source: Laxman Dhulipala. Provably Efficient and Scalable Shared-Memory Graph Processing. PhD Thesis. 2020.



Challenges of Graph Data Processing

Large Volume:
Millions even trillions of edges.

Complex Structure:
Skewness, local dense communities.
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Challenges of Graph Data Processing

Large Volume:
Millions even trillions of edges.

Complex Structure:
Skewness, local dense communities.

Poor Hardware Utilization:
Load imbalance, irregular memory 

access.
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32
Figure source: https://github.com/eleurent/twitter-graph



• Develop efficient and effective techniques to accelerate subgraph query processing.

My Primary Research

Algorithmic 
Optimization

Hardware 
Utilization

Systematic 
Evaluation
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In-Memory Subgraph Matching: An In-
Depth Study

Shixuan Sun and Qiong Luo

Hong Kong University of Science and Technology



Preliminaries

• Deciding whether 𝑔′ contains 𝑔, i.e., the subgraph isomorphism problem, is NP-complete.

• Deciding whether 𝑔′ is identical to 𝑔, i.e., the graph isomorphism problem, belongs to NP, 
but not known to be P or NP-complete.
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Matching Order

• Given a query graph 𝑞, a matching order, denoted as 𝜋, is a permutation of vertices in 𝑞. 
𝜋[𝑖] is the 𝑖th vertex in 𝜋, and 𝜋[𝑖:𝑗] is the set of vertices from index 𝑖 to 𝑗 in 𝜋.

• Example: 𝜋=(𝑢1,𝑢2,𝑢4,𝑢3), 𝜋[1]=𝑢1 and 𝜋[1:3]={𝑢1,𝑢2,𝑢4}.
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Complete Candidate Set

• Given 𝑞 and 𝐺, a complete candidate set of a query vertex 𝑢, denoted as 𝑢. 𝐶, is a set of 
vertices in 𝐺 such that if a mapping (𝑢, 𝑣) is in any subgraph isomorphism from 𝑞 to 𝐺, 
then 𝑣 belongs to 𝑢. 𝐶.

• Example: 𝑢2. 𝐶 = 𝑣 𝑣 ∈ 𝑉 𝐺 𝑎𝑛𝑑 𝐿 𝑣 = 𝐿 𝑢2 = {𝑣2, 𝑣5, 𝑣8}.
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Partial Subgraph Isomorphism (PSI)

• Given 𝑞, 𝐺 and 𝜋, a partial subgraph isomorphism 𝑓𝑖 is a subgraph isomorphism from 
𝑞[𝜋[1: 𝑖]] to 𝐺 where 1 ≤ 𝑖 ≤ |𝑉(𝑞)|, and 𝑞[𝜋[1: 𝑖]] is  a vertex induced subgraph of 𝑞
given 𝜋[1: 𝑖]. Specifically, 𝑓0 = {}, and 𝑓|𝑉(𝑞)| is a subgraph isomorphism from 𝑞 to 𝐺.

• Example: Suppose 𝜋 = (𝑢1, 𝑢2, 𝑢4, 𝑢3). 

• 𝑓3 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , (𝑢4, 𝑣6)} is a partial subgraph isomorphism.
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Feasible Mapping

• Given 𝑞, 𝐺, 𝜋, 𝑓𝑖 , 𝑢 = 𝜋[𝑖 + 1] and 𝑣 ∈ 𝑢. 𝐶 where 0 ≤ 𝑖 ≤ 𝑉 𝑞 − 1, a mapping (𝑢, 𝑣) is 
feasible if 𝑓𝑖 can be extended to 𝑓𝑖+1 by adding the mapping (𝑢, 𝑣) to 𝑓𝑖. Otherwise, the 
mapping is infeasible.

• Feasible condition:

1. 𝐿 𝑢 = 𝐿(𝑣);

2. 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑝𝑝𝑒𝑑;

3. 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢′ 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑚𝑎𝑝𝑝𝑒𝑑, 𝑖𝑓 𝑒 𝑢, 𝑢′ ∈
𝐸 𝑞 , 𝑡ℎ𝑒𝑛 𝑒 𝑣, 𝑓 𝑢′ ∈ 𝐺.
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Example Feasible Mapping

⚫ Given 𝜋 = 𝑢1, 𝑢2, 𝑢4, 𝑢3 , 𝑢4. 𝐶 = 𝑣1, 𝑣3, 𝑣4, 𝑣6 𝑎𝑛𝑑 𝑓2 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 }:

• the mapping 𝑢4, 𝑣3 is infeasible: 𝑣3 has been mapped;

• the mapping 𝑢4, 𝑣4 is infeasible: 𝑒(𝑣3, 𝑣4) ∉ 𝐸(𝐺);

• the mapping (𝑢4, 𝑣6) is feasible;

• 𝑓2 can be extended to 𝑓3 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , (𝑢4, 𝑣6)} by adding the feasible 
mapping 𝑢4, 𝑣6 .
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Example Feasible Mapping

⚫ Given 𝜋 = 𝑢1, 𝑢2, 𝑢4, 𝑢3 , 𝑢4. 𝐶 = 𝑣1, 𝑣3, 𝑣4, 𝑣6 𝑎𝑛𝑑 𝑓2 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 }:

• the mapping 𝑢4, 𝑣3 is infeasible: 𝑣3 has been mapped;

• the mapping 𝑢4, 𝑣4 is infeasible: 𝑒(𝑣3, 𝑣4) ∉ 𝐸(𝐺);

• the mapping (𝑢4, 𝑣6) is feasible;

• 𝑓2 can be extended to 𝑓3 = { 𝑢1, 𝑣3 , 𝑢2, 𝑣5 , (𝑢4, 𝑣6)} by adding the feasible 
mapping 𝑢4, 𝑣6 .
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Graph Exploration based Approaches
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⚫ General Idea:

Input: a query graph 𝑞 and a data graph 𝐺
Output: all subgraph isomorphisms from 𝑞 to 𝐺
1. Generate a matching order 𝜋;

2. Obtain a complete candidate set 𝑢. 𝐶 for every vertex 𝑢 ∈ 𝑉(𝑞);
3. Recursively enumerate all solutions by extending partial subgraph 

isomorphisms iteratively along 𝜋.



Generate Matching Order and Candidate Sets
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⚫ Generate a matching order:

• 𝜋 = the input order of query vertices.

• Example: 𝜋 = (𝑢1, 𝑢2, 𝑢3, 𝑢4).

⚫ Generate complete candidate sets:

• 𝑢. 𝐶 = 𝑣 𝑣 ∈ 𝑉 𝐺 , 𝐿 𝑣 = 𝐿 𝑢 𝑎𝑛𝑑 𝑑 𝑣 ≥ 𝑑 𝑢 ,
𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑢 ∈ 𝑉 𝑞 .

• Example: 𝑢1. 𝐶 = 𝑣1, 𝑣3, 𝑣4, 𝑣6 , 𝑢2. 𝐶 = 𝑣2, 𝑣5 , 𝑢3. 𝐶 =
𝑣7, 𝑣9 , 𝑢4. 𝐶 = 𝑣1, 𝑣3, 𝑣4, 𝑣6 .



Recursive Enumeration Process
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Backtracking Enumeration Process
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Backtracking Enumeration Process
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Backtracking Enumeration Process
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Backtracking Enumeration Process
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Backtracking Enumeration Process
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Backtracking Enumeration Process
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Backtracking Enumeration Process
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𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}
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Backtracking Enumeration Process
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𝑢1. 𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣6}
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(a). Query graph 𝑞 (b). Data graph 𝐺

𝑓1 = { 𝑢1, 𝑣1 }
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(a). Query graph 𝑞 (b). Data graph 𝐺

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
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Key Issues of Minimizing Search Space
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⚫ Issue 1:

• Optimize the matching order to prune the invalid search 

paths at an early stage. 

⚫ Issue 2:

• Decrease the search breadth of every psi.

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
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√
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× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and 
𝑣9 due to space 

limit.

𝝅



Representative Algorithms
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Database

Backtracking Search

QuickSI, GADDI, SPath, GraphQL, 

TurboIso, BoostIso, CFL, SGMatch, 

CECI, DP-iso, PGX, PSM, STwig

Multi-way Join
EmptyHeaded, Graphflow, LogicBlox, 

PostgreSQL, MonetDB, Neo4j, GpSM

Artificial Intelligence Backtracking Search
Ullmann, VF2, VF2++, VF3, LAD, 

Glasgow

Bioinformatics Backtracking Search RI, VF2+, Grapes
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Category of Backtracking-Based Algorithms 

 Direct-Enumeration: Directly explore 𝐺 to find all results.
➢ Example algorithms: QuickSI, RI and VF2++.
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Category of Backtracking-Based Algorithms 

 Direct-Enumeration: Directly explore 𝐺 to find all results.
➢ Example algorithms: QuickSI, RI and VF2++.

 Indexing-Enumeration: Construct indexes on 𝐺 and answer all queries with 
the assistance of indexes.
➢ Example algorithms: GADDI and SGMatch.
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Category of Backtracking-Based Algorithms 

 Direct-Enumeration: Directly explore 𝐺 to find all results.
➢ Example algorithms: QuickSI, RI and VF2++.

 Indexing-Enumeration: Construct indexes on 𝐺 and answer all queries with 
the assistance of indexes.
➢ Example algorithms: GADDI and SGMatch.

 Preprocessing-Enumeration: Generate candidate vertex sets per query at 
runtime and evaluate the query based on candidate vertex sets.
➢ Widely used in the latest algorithms proposed in the database community.

➢ Example algorithms: GraphQL, TurboISO, CFL, DP-iso and CECI.
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Observation

 Techniques in existing algorithms can be classified into several categories 
each of which have the same goal.
➢ Example: Methods filtering candidates, methods optimizing the matching order.
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Observation

 Techniques in existing algorithms can be classified into several categories 
each of which have the same goal.
➢ Example: Methods filtering candidates, methods optimizing the matching order.

 The methods are closely related and all affect the evaluation performance.
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Observation

 Techniques in existing algorithms can be classified into several categories 
each of which have the same goal.
➢ Example: Methods filtering candidates, methods optimizing the matching order.

 The methods are closely related and all affect the evaluation performance.

 Previous studies regard each algorithm as a black box.
➢ Hide effectiveness of individual techniques.
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Our Work

 Study individual techniques in the algorithms within a common framework.
➢ Compare and analyze individual techniques in existing algorithms.

➢ Conduct extensive experiments to evaluate the effectiveness of the techniques.

➢ Pinpoint techniques leading to the performance differences and make recommendation.
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Our Work

 Study individual techniques in the algorithms within a common framework.
➢ Compare and analyze individual techniques in existing algorithms.

➢ Conduct extensive experiments to evaluate the effectiveness of the techniques.

➢ Pinpoint techniques leading to the performance differences and make recommendation.

 Select seven algorithms from three different communities.
➢ GraphQL [SIGMOD’08]

➢ CFL  [SIGMOD’16]

➢ CECI  [SIGMOD’19]

➢ DP-iso  [SIGMOD’19]

➢ QuickSI [VLDB’08]

➢ RI  [BMC Bioinformatics’13]

➢ VF2++  [Discrete Applied Mathematics’18]
66
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Common Framework
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Filtering 

Method

Ordering 

Method

Enumeration 

Method

Step 1

Step 2

Step 3

All Subgraphs of 

𝐺 Identical to 𝑞
Query Graph 𝑞
Data Graph 𝐺

Input Output

Subgraph Matching

 Filtering Method: Given 𝑞 and 𝐺, minimize candidate vertex sets 𝐶(𝑢) for each 𝑢 ∈ 𝑉(𝑞).

➢ 𝐶(𝑢): A set of data vertices 𝑣 ∈ 𝑉(𝐺) that can be mapped to 𝑢.

 Ordering Method: Optimize the matching order 𝜑 based on the statistics of candidate vertex sets.

➢ 𝜑: A sequence of query vertices 𝑉(𝑞).

 Enumeration Method: Iteratively extend partial results 𝑀 by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑.

➢ 𝑀: A dictionary storing mappings between query vertices to data vertices.

𝐶(𝑢)

𝐶(𝑢)

𝜑



Principles of Our Study

 Study the performance of the algorithms from four aspects.

 When comparing one component, fix the others for fair comparison.
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Filtering 
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Ordering 
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Other
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Filtering Method

 Basic Method: Filtering 𝐶(𝑢) based on the label 𝐿(𝑢) and degree 𝑑(𝑢) of 𝑢, 
i.e., 𝐶 𝑢 = {𝑣 ∈ 𝑉(𝐺)|𝐿 𝑣 = 𝐿(𝑢) ∧ 𝑑(𝑣) ≥ 𝑑(𝑢)}
➢ Take 𝑢2 and 𝑢3 as examples: 𝐶 𝑢2 = 𝑣1, 𝑣3, 𝑣5 , 𝐶 𝑢3 = 𝑣9, 𝑣10, 𝑣12
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Filtering Method

 Filtering Rule: Given 𝑣 ∈ 𝐶(𝑢), if there exists 𝑢′ ∈ 𝑁 𝑢 such that 𝑁 𝑣 ∩
𝐶 𝑢′ = ∅, then 𝑣 can be removed from 𝐶(𝑢).

 Advanced Method: Filtering 𝐶(𝑢) with the rule along a sequence of 𝑢 ∈ 𝑉(𝑞).
➢ Example algorithms: GraphQL, CFL, CECI and DP-iso.

➢ Major differences: The filtering sequence and the number of rounds repeated.
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Filtering Method

 Build an auxiliary data structure 𝐴 to record edges between candidate 
vertex sets.
➢ Serve the cardinality estimation in the ordering method.

➢ Accelerate the subsequent enumeration method.

71𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoGraphQL



Ordering Method

 Adopt the greedy method that (1) selects a start vertex; and (2) iteratively 
adds unselected query vertices to 𝜑 according to the cost estimation based 
on 𝐶 and 𝐴.
➢ The major difference is the cost function.

➢ GraphQL: Select the vertex 𝑢 with the minimum |𝐶(𝑢)| at each step.

➢ CFL/DP-iso: Select the path of 𝑞 with the minimum number of embeddings in 𝐴 at each step.
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Enumeration Method

 Extend partial results by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑 with the 
assistance of 𝐴.
➢ GraphQL: Probe 𝐺 for all edge validation.

➢ CFL: Probe 𝐺 and 𝐴 for the non-tree and tree edge validation, respectively.

➢ DP-iso/CECI: Probe 𝐴 for all edge validation.
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Enumeration Method

 Extend partial results by mapping 𝑢 ∈ 𝑉(𝑞) to 𝑣 ∈ 𝐶(𝑢) along 𝜑 with the 
assistance of 𝐴.
➢ GraphQL: Probe 𝐺 for all edge validation.

➢ CFL: Probe 𝐺 and 𝐴 for the non-tree and tree edge validation, respectively.

➢ DP-iso/CECI: Probe 𝐴 for all edge validation.
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𝐴 of CFL 𝐴 of CECI 𝐴 of DP-isoQuery graph 𝑞 GraphQL

Recommendation: Use the DP-iso/CECI-style 

auxiliary data structure and enumeration method.



Optimization Method

 Failing set pruning: During the enumeration, utilize the information obtained 
from the explored part of the search tree to prune invalid partial results.
➢ Proposed by DP-iso.

➢ Other algorithms can adopt  the optimization as well.
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Experimental Setup

➢ All algorithms are implemented in C++ and run on a machine with 2.3GHz CPUs and 
128GB RAM.

➢ Real-world data graphs:

➢ Query sets:
➢ Query graphs are randomly extracted from the data graph.

➢ Each query set contains 200 connected graphs with the same number of vertices.

➢ 𝑄𝑖𝐷 and 𝑄𝑖𝑠 denote dense (𝑑(𝑞) ≥ 3) and sparse (𝑑 𝑞 < 3) query sets containing graphs with 𝑖 vertices.

➢ Each data graph has 1800 queries in total.
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 Metrics: Num of Candidate Vertices = 
1

|𝑄|
σ𝑞∈𝑄

1

|𝑉(𝑞)|
σ𝑢∈𝑉(𝑞) |𝐶(𝑢)| .

 Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.

Effectiveness of Filtering Methods

77

Varying datasets on dense query sets.

LDF: Label and degree filter.
GQL: Filtering of GraphQL.
CFL: Filtering of CFL.
CECI: Filtering of CECI.
DP: Filtering of DP-iso.
STEADY: Given 𝑣 ∈ 𝐶 𝑢 , it satisfies 
that ∀𝑢′ ∈ 𝑁 𝑢 ,𝑁(𝑣) ∩ 𝐶(𝑢′) ≠ ∅.



 Metrics: Num of Candidate Vertices = 
1

|𝑄|
σ𝑞∈𝑄

1

|𝑉(𝑞)|
σ𝑢∈𝑉(𝑞) |𝐶(𝑢)| .

 Finding: GraphQL, CFL and DP-iso are competitive with each other, and they are close to STEADY.

 Recommendation: Adopt the filtering method of GraphQL/CFL/DP-iso to prune candidate vertex sets.

Effectiveness of Filtering Methods
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Varying datasets on dense query sets.

LDF: Label and degree filter.
GQL: Filtering of GraphQL.
CFL: Filtering of CFL.
CECI: Filtering of CECI.
DP: Filtering of DP-iso.
STEADY: Given 𝑣 ∈ 𝐶 𝑢 , it satisfies 
that ∀𝑢′ ∈ 𝑁 𝑢 ,𝑁(𝑣) ∩ 𝐶(𝑢′) ≠ ∅.



Effectiveness of Ordering Methods

 Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt 
candidate vertex sets of GraphQL.

 Metrics: Enumeration Time = 
1

|𝑄|
σ𝑞∈𝑄𝑇(𝐴, 𝑞).

 Finding: GraphQL and RI are usually the most effective among competing methods.
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Varying datasets on dense query sets.

QSI: Ordering of QuickSI.
GQL: Ordering of GraphQL.
CFL: Ordering of CFL.
CECI: Ordering of CECI.
DP: Ordering of DP-iso.
RI: Ordering of RI.
2PP: Ordering of VF2++.

GraphQL

RI



Effectiveness of Ordering Methods

 Setup: Use the DP-iso/CECI-style auxiliary data structure and enumeration method and adopt 
candidate vertex sets of GraphQL.

 Metrics: Enumeration Time = 
1

|𝑄|
σ𝑞∈𝑄𝑇(𝐴, 𝑞).

 Finding: GraphQL and RI are usually the most effective among competing methods.

 Recommendation: Adopt GraphQL and RI on dense and sparse data graphs respectively.
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Varying datasets on dense query sets.

QSI: Ordering of QuickSI.
GQL: Ordering of GraphQL.
CFL: Ordering of CFL.
CECI: Ordering of CECI.
DP: Ordering of DP-iso.
RI: Ordering of RI.
2PP: Ordering of VF2++.

GraphQL

RI



Effectiveness of Failing Set Pruning

 Setup: Continue with the experiments on ordering methods and enable the failing set pruning.

 Metrics: Count the number of unsolved queries within 5 minutes.

 Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all  
competing algorithms can generate ineffective matching orders.

81Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing    
algorithms can complete within 5 minutes.



Effectiveness of Failing Set Pruning

 Setup: Continue with the experiments on ordering methods and enable the failing set pruning.

 Metrics: Count the number of unsolved queries within 5 minutes.

 Finding: (1) Failing set pruning can significantly reduce the number of unsolved queries; and (2) all  
competing algorithms can generate ineffective matching orders.

 Recommendation: Enable failing set pruning for large queries.

82Number of unsolved queries among 1800 queries for each data graph.

wo/fs: Enumeration without the failing set pruning.
w/fs: Enumeration with the failing set pruning.
Fail-ALL: Number of queries that no competing    
algorithms can complete within 5 minutes.



Summary

 Compare and analyze individual techniques in seven algorithms from 
three communities within a common framework.

 Conduct extensive experiments to evaluate the effectiveness of each kind 
of methods respectively.

 Report our new findings and make the recommendation through 
experiments and analysis.

Checkout source code and datasets at: github.com/RapidsAtHKUST/SubgraphMatching
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https://github.com/RapidsAtHKUST/SubgraphMatching


Outline

• Benchmark
• Background

• In-Memory Subgraph Matching: An In-Depth Study. SIGMOD 2020.

• Algorithms
• RapidMatch: A Holistic Approach to Subgraph Query Processing. VLDB 2021.

• PathEnum: Towards Real-Time Hop Constraint 𝒔-𝒕 Path Enumeration. SIGMOD 2021.

• Parallelization
• LIGHT: Parallelizing Subgraph Query Processing. ICPADS 2018 & ICDE 2019.

• ThunderRW: An In-Memory Graph Random Walk Engine. VLDB 2021.
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Two Trends of Methods on the Same Problem

Exploration-based Methods

Native methods specifically designed for 

subgraph query processing. 

Evaluating subgraph queries with worst-

case optimal join (WCOJ). 

Join-based Methods

Methodology

86
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Two Trends of Methods on the Same Problem

Exploration-based Methods

Native methods specifically designed for 

subgraph query processing. 

𝑄 with tens of vertices on 𝐺 having 

thousands to millions of vertices. 

Optimizing query plans with greedy 

methods based on cardinality estimation. 

Evaluating subgraph queries with worst-

case optimal join (WCOJ). 

Join-based Methods

𝑄 with a few vertices (<10) on 𝐺 having 

up to hundreds of millions of vertices. 

Finding the optimal query plan based on 

cardinality estimation in a plan space. 

Methodology

Workload
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Two Trends of Methods on the Same Problem

Exploration-based Methods

Native methods specifically designed for 

subgraph query processing. 

𝑄 with tens of vertices on 𝐺 having 

thousands to millions of vertices. 

Applying advanced filtering methods to 

reduce the input graph size. 

Optimizing query plans with greedy 

methods based on cardinality estimation. 

Evaluating subgraph queries with worst-

case optimal join (WCOJ). 

Join-based Methods

𝑄 with a few vertices (<10) on 𝐺 having 

up to hundreds of millions of vertices. 

Simply utilizing labels to pruning the input 

graph. 

Finding the optimal query plan based on 

cardinality estimation in a plan space. 

Methodology

Workload

Input

Filtering

Query Plan

Optimization
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CFL [SIGMOD’16], DP-iso [SIGMOD’19] EmptyHeaded [SIGMOD’16], GraphFlow [VLDB’19]



Problems Studied in Our Work

• Q1. Is one kind of methods inherently better than the other?

• A1. No, the complexity of result enumeration in state-of-the-art 
exploration-based methods can match that of WCOJ.  
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Problems Studied in Our Work

• Q1. Is one kind of methods inherently better than the other?

• A1. No, the complexity of result enumeration in state-of-the-art 
exploration-based methods can match that of WCOJ.  

• Q2: How to design an approach to handle various workloads efficiently?
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Evaluating Subgraph Query with Join
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𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4
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Evaluating Subgraph Query with Join
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Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors 
of 𝑣 in 𝑅(𝑢, 𝑢′). 
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𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

Input Relation 

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{? }

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

Matching 

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors 
of 𝑣 in 𝑅(𝑢, 𝑢′). 
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Evaluating Subgraph Query with Join
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𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4
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Input Relation 

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{? }

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

Matching 

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors 
of 𝑣 in 𝑅(𝑢, 𝑢′). 
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Evaluating Subgraph Query with Join
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𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4
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u4

Candidate

Data Vertex

Input Relation 

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{𝑣1}

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

𝑅(𝑢1: 𝑣2, 𝑢4)

Matching 

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors 
of 𝑣 in 𝑅(𝑢, 𝑢′). 
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Evaluating Subgraph Query with Join

A

B

C D
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Query Graph 𝑄.

Data Graph 𝐺.
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v9 v7
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𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

Input Relation 

Generation

Result

Enumeration

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{𝑣1}

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

𝑅(𝑢1: 𝑣2, 𝑢4)

Matching 

Order 𝜑
Notation:
𝑅 𝑢: 𝑣, 𝑢′ : The neighbors 
of 𝑣 in 𝑅(𝑢, 𝑢′). 
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Evaluating Subgraph Query with Join
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C D
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u3
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Query Graph 𝑄.

Data Graph 𝐺.
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v6 v4

v6 v7

u1 u4
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v9 v7
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𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4
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u3

u1

u4

Candidate

Data Vertex

u1 u2 u3 u4
v2 v3 v4 v1

Input Relation 

Generation

Result

Enumeration
Output

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{𝑣1}

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

𝑅(𝑢1: 𝑣2, 𝑢4)

Matching 

Order 𝜑
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Evaluating Subgraph Query with Join
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C D
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u3
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Query Graph 𝑄.

Data Graph 𝐺.
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v5 v3

v6 v3

v10 v9

u1 u3
v2 v4
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v6 v4

v6 v7
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v3 v4
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v10 v8

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑄 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢2, 𝑢3 ⋈ 𝑅 𝑢1, 𝑢4

u2

u3

u1

u4

Candidate

Data Vertex

u1 u2 u3 u4
v2 v3 v4 v1

Input Relation 

Generation

Result

Enumeration
Output

{𝑣3, 𝑣9}

{𝑣4}

{𝑣2, 𝑣6}

{? }

𝑅(𝑢2: 𝑣3, 𝑢3)

𝑅(𝑢2: 𝑣3, 𝑢1)⋂𝑅(𝑢3: 𝑣4, 𝑢1)

Matching 

Order 𝜑
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Performance Factors

• The cardinality of the input relations.

• The effectiveness of the matching order.

• The efficiency of processing each intermediate result.
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RapidMatch: A Holistic Approach to Subgraph Queries

Minimize the size of input 

relations.

Optimize the matching order to reduce 

the number of intermediate results.

Accelerate the efficiency of 

processing intermediate results.

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7
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Selection

u1 u3
v2 v4

v6 v4

u2 u3
v3 v4

u1 u2
v2 v3

v6 v3

u1 u4
v2 v1

v6 v8

Full Reducer

A B

C

D

A
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B
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u1

u1

u1u4u2

u2

u2

u3

u3 u3

S1 S2 S3
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C

D

u1

u2
u4

u3

C
u1

QC QF

⋈
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C D
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u2
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u4

Q

Optimiz
e Data 
Layout

Re for e ∈E(QC)

Re for e ∈E(QF)

Intersecti
on 

Caching

Failing Set 
Pruning

Set 
Intersecti

on

Build 
Hash 
Index

u1 u2 u3 u4
v2 v3 v4 v1

v6 v3 v4 v8

Results

Input

Relation

Filter

Join Plan

Generator

Relation

Encoder

Result

Enumerator Output
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Relation Filter

Notation:
𝑆𝑢: The star rooted at a vertex 𝑢. 

u1 u2
v2 v3

v5 v3

v6 v3

v10 v9

u1 u3
v2 v4

v5 v7

v6 v4

v6 v7

u1 u4
v2 v1

v6 v8

v10 v8

𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3)

𝑅(𝑢1, 𝑢4)

u1 u2 u3 u4
v2 v3 v4 v1

v6 v3 v4 v8

v6 v3 v7 v8

Results 𝑅(𝑆𝑢1)

A

B

C D

u1

u2

u3

u4

Query Graph 𝑄.

𝑆𝑢1 ≔ 𝑅 𝑢1, 𝑢2 ⋈ 𝑅 𝑢1, 𝑢3
⋈ 𝑅 𝑢1, 𝑢4

• Full Reducer: A sequence of semi-joins to remove dangling tuples from an acyclic query.

• Dangling tuples: the tuple that cannot appear in any results.
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Relation Filter

• Method: Apply the full reducer on 𝑆𝑢 for each query vertex 𝑢 along an order 𝛿.

• 1st: conduct the filter along the order of 𝛿, i.e., forward pruning.

• 2nd: repeat the filter along the reverse order of 𝛿, i.e., backward pruning.
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v5 v3
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v10 v9
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v6 v4

v6 v7

u1 u4
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v9 v7
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𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)
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C D
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u2
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D
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BC
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AC

u1

u1

u1u4u2

u2

u2

u3

u3 u3

S1 S2 S3

1st round: Forward Pruning

2nd round: Backward Pruning

u1 u3
v2 v4

v6 v4

u2 u3
v3 v4

u1 u2
v2 v3

v6 v3

u1 u4
v2 v1

v6 v8

𝑅(𝑢1, 𝑢3) 𝑅(𝑢1, 𝑢4)

𝑅(𝑢2, 𝑢3) 𝑅(𝑢1, 𝑢2)
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Traditional Join Plan Generator 

• Problem: Optimize the matching order to minimize the number of intermediate results.

• Existing Methods:

• Task 1: Estimate the cost given a matching order based on the cardinality estimation.

• Task 2: Find the order with the minimum cost in the plan space.
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u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Cardinality Estimation is Hard

• Cardinality Estimation: Estimate the number of a sub-structure of 𝑄 that appears in 𝐺.

Query Graph 𝑄. Data Graph 𝐺.

How many times does the square appear 

in 𝐺? u3u1

u2 u4
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u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Cardinality Estimation is Hard

• Cardinality Estimation: Estimate the number of a sub-structure of 𝑄 that appears in 𝐺.

Query Graph 𝑄. Data Graph 𝐺.

How many times does the square appear 

in 𝐺? u3u1

u2 u4

Hard question 
to answer…
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Plan Space is Huge

• Plan Space: A set containing all valid join orders. 

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Query Graph 𝑄.

The size of the plan space 
grows exponentially with the 
query size increasing…

The number of 

query vertices

The size of the 

plan space

8 40,320

9 362,880

10 3,628,800

11 39,916,800

… …

16 20,922,789,888,000

Considering to extend 𝜑 by a vertex at 

one time only.
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Considering a Simpler Problem

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Query Graph 𝑄. Data Graph 𝐺.

u3u1

u2 u4 u6

u5u3

u4

Which one appear less frequently in 𝐺?
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Considering a Simpler Problem

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Query Graph 𝑄. Data Graph 𝐺.

Which one appear less frequently in 𝐺?

u3u1

u2 u4 u6

u5u3

u4

The dense 
one!
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Considering a Simpler Problem

u11u7

u8

u9

u10u6

u5u3u1

u2 u4

Query Graph 𝑄. Data Graph 𝐺.

Which one appear less frequently in 𝐺?

u3u1

u2 u4 u6

u5u3

u4

The dense 
one!

Prioritizing dense sub-structures of 𝑄 can reduce the 
number of intermediate results.
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Join Plan Generator based on Graph Density

• Decompose 𝑄 into several subgraphs with different densities.

• Construct a tree where each node is a subgraph and the edge denotes the containment 
relationship.

• Traverse the tree to generate a matching order putting vertices in the dense part of 𝑄 at 
the beginning of the matching order.
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Optimizing Matching Order based on Graph Density

• Nucleus Decomposition: Find dense subgraphs at different level of hierarchies.

• a nucleus 𝜒 is a connected subgraph satisfying density and connectivity constraints.

• a nucleus forest 𝒯 describes hierarchies based on nucleus containment relationship.
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Density 

Tree
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𝒳3 𝒳4
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𝒳6 𝒳7

𝒳1

𝒳2

𝒳3

𝒳4

𝒳5

𝒳7

𝒳6 112



Theoretical Guarantee

• For the query graph 𝑄 with an arbitrary structure, RapidMatch is worst-
case optimal, i.e., the running time matches the maximum output size of 𝑄.

• For the query graph 𝑄 with the acyclic structure, RapidMatch is instance 
optimal, i.e., the running time matches the number of results in 𝐺.
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• Data Graphs: Seven real-world graphs with |𝐸(𝐺)| varying from 86𝐾 to 42𝑀.

• Query Graphs: Both small and large query workloads.
• Small Queries: Seven queries widely used in previous work.

• Large Queries: Ten query set each of which contains 200 queries.

• |𝑉(𝑄)| varied from 4 to 32.

• Counterparts:
• CFL [SIGMOD’16], DF [SIGMOD’19], GF [VLDB’19]

Experimental Setup
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Experiment Results

• Our solution outperforms state of the art by orders of magnitude.

Our Solution: RapidMatch

Small queries on eu2005 dataset

𝑉 = 862,664, |E| = 16,138,468, |Σ| = 4

Large queries on youtube dataset

𝑉 = 1,134,890, |E| = 2,987,624, |Σ| = 25
Notation:
|Σ|: The number of labels. 115



Summary

• We study exploration-based and join-based methods and bridge the gap between them.

• We propose a join-based engine that can efficiently evaluate various workloads.

• We conduct extensive experiments with various workloads to evaluate the effectiveness 
of our solution.

• Datasets and source code available at github.com/RapidsAtHKUST/RapidMatch.
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PathEnum: Towards Real-Time Hop 
Constraint 𝒔-𝒕 Path Enumeration

Shixuan Sun, Yuhang Chen, Bingsheng He, Bryan Hooi

National University of Singapore



Walk and Path

• Walk 𝑊: 

oA sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑙) such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝑒(𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸.
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Walk and Path

• Walk 𝑊: 

oA sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑙) such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝑒(𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸.

• Path 𝑃:

oA walk with no duplicate vertices.
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• Walk 𝑊: 

oA sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑙) such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝑒(𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸.

• Path 𝑃:

oA walk with no duplicate vertices.

Walk and Path

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
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𝑊1 = (𝑠, 𝑣0, 𝑡)



• Walk 𝑊: 

oA sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑙) such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝑒(𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸.

• Path 𝑃:

oA walk with no duplicate vertices.

Walk and Path

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
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𝑊2 = (𝑠, 𝑣0, 𝑣6, 𝑣0, 𝑡)



• Hop constraint 𝑠-𝑡 path enumeration (HcPE): 

oFind all paths 𝑃 from 𝑠 to 𝑡 such that the length 𝐿(𝑃) ≤ 𝑘.

Problem Definition
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• Hop constraint 𝑠-𝑡 path enumeration (HcPE): 

oFind all paths 𝑃 from 𝑠 to 𝑡 such that the length 𝐿(𝑃) ≤ 𝑘.

Problem Definition

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4

1 2 3
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• Hop constraint 𝑠-𝑡 path enumeration (HcPE): 

oFind all paths 𝑃 from 𝑠 to 𝑡 such that the length 𝐿(𝑃) ≤ 𝑘.

Problem Definition

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4

1

2

3 4

5
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Applications

• Detecting money laundering [FATF’13, AAAI’20]

oMoney transactions among bank accounts.

oFind transaction paths between suspicious accounts.

o𝑘 is relatively small (e.g., 𝑘 = 2).
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Applications

• Detecting money laundering [FATF’13, AAAI’20]

oMoney transactions among bank accounts.

oFind transaction paths between suspicious accounts.

o𝑘 is relatively small (e.g., 𝑘 = 2).

• Detecting e-commerce merchant fraud [VLDB’18]

oActivities among individual users in online shopping.

oFind cycles triggered by activities between users.

o𝑘 is relatively small (e.g., 𝑘 = 6).
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Challenges

• Applications have rigid real-time requirement.

• Search space can be large with 𝑘 increasing.

• Query time of different queries varies greatly.
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Existing Solutions

• A depth-first search (DFS) based framework [VLDB’20].

oEnumerate all results by executing a backtracking search from 𝑠 on 𝐺.

oPrune invalid paths with barriers.

oUpdate barriers dynamically to achieve polynomial delay.
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Barrier Initialization

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Distance to 𝑡. 
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DFS on Graph

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Budget 𝑟 = 1. 
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DFS on Graph

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Budget 𝑟 = 1. 

𝐵 𝑡 + 1 ≤ 𝑟. 

131



DFS on Graph

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Budget 𝑟 = 1. 

𝐵 𝑡 + 1 ≤ 𝑟. 
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DFS on Graph

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = 2

Budget 𝑟 = 1. 

𝐵 𝑣2 + 1 > 𝑟. 
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Barrier Update

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1 𝐵 = ∞
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Issues

• Barrier update incurs high overhead.

• Invalid edges involve in the search.

• Lack a model to optimize the search order.
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Fail to meet the rigid time-constraint in 

real-world applications!



Our Solution
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PathEnum:

Keep the search simple but efficient 

simple and efficient!
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• Build a light-weight index 𝐼 by executing BFS from 𝑠 and 𝑡.
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o 𝐼 𝑖 : candidate vertices that can appear at position 𝑖 of 𝑃 from 𝑠 to 𝑡.

o 𝐼 𝑣, 𝑖 : neighbors 𝑣′ of 𝑣 such that 𝐵(𝑣′) ≤ 𝑖.

oTime complexity: 𝑂( 𝑉 + |𝐸|).
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PathEnumInput Output

• Optimize the search order with a join-based model.

oPreliminary: roughly but quickly estimate the cost of the search.

oFull-fledged: optimize the order with a dynamic programming method.

oTime complexity: 𝑂(𝑘2) and 𝑂(𝑘 × |𝐸|).
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Index

Join on Index
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𝑞(𝑠, 𝑡, 𝑘)

Results

𝑃(𝑠, 𝑡, 𝑘, 𝐺)

PathEnumInput Output

• Search on the index based on the guidance of the optimizer.

oPerform a DFS on the index from 𝑠.

oPerform binary joins on the index.

oTime complexity: 𝑂 𝑘 × |𝛿𝑊| (𝛿𝑊: walks 𝑊 from 𝑠 to 𝑡 such that 𝐿(𝑊) ≤ 𝑘).
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Comparison of Search

• Search on the graph

o For each 𝑣 ∈ 𝑁 𝑣5 = 𝑡, 𝑣2 :

Update 𝐵(𝑣).

If 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and 𝐵 𝑣 + 1 ≤ 𝑟:

Move to 𝑣 and continue the search.

𝑠 𝑡

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5

𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 1
𝐵 = 2

Budget 𝑟 = 1. 150
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𝑠 𝑡

𝑣0
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𝑣6 𝑣7
Hop constraint

𝑘 = 4
𝐵 = ∞

𝐵 = 0

𝐵 = 1𝐵 = 2𝐵 = 3

𝐵 = 4 𝐵 = 2
𝐵 = 1

𝐵 = 2

Budget 𝑟 = 1. 

• Search on the index
oFor each 𝑣 ∈ 𝐼 𝑣5, 𝑟 − 1 = 𝑡 :
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Comparison of Search Order

• Model a HcPE query as a chain join.

o𝑄 ≔ 𝑅1 𝑢0, 𝑢1 ⋈𝑅2 𝑢1, 𝑢2 ⋈𝑅3 𝑢2, 𝑢3 ⋈𝑅4 𝑢3, 𝑢4

153



Comparison of Search Order

• Model a HcPE query as a chain join.

o𝑄 ≔ 𝑅1 𝑢0, 𝑢1 ⋈𝑅2 𝑢1, 𝑢2 ⋈𝑅3 𝑢2, 𝑢3 ⋈𝑅4 𝑢3, 𝑢4

𝑅1(𝑢0, 𝑢1) 𝑅2(𝑢1, 𝑢2)

⋈ 𝑅3(𝑢2, 𝑢3)

⋈ 𝑅4(𝑢3, 𝑢4)

⋈

𝑂𝑈𝑇
DFS
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⋈
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⋈

⋈

𝑂𝑈𝑇
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⋈

Query Optimizer

DFS Binary Join
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• Existing Solutions:
o Conduct filtering in the search to achieve polynomial delay.

o Perform a DFS on the graph and dynamically update the barrier.

o 𝑂(𝑘 × |𝐸| × |𝛿𝑃|), 𝛿𝑃 denotes paths 𝑃 from 𝑠 to 𝑡 such that 𝐿(𝑃) ≤ 𝑘.

• PathEnum:
oBuild a light-weight index to keep the search simple and efficient.

oSearch on the index with the guidance of a cost-based query optimizer.

o𝑂(𝑘 × |𝛿𝑊|), 𝛿𝑊 denotes walks 𝑊 from 𝑠 to 𝑡 such that 𝐿(𝑊) ≤ 𝑘.



Experimental Setup

• Workload:
o 14 real-world graphs with |𝐸| varying from 314𝐾 to 17𝑀.

o 1000 queries randomly generated.

o 𝑘 varies from 3 to 8 and the default value is 6.

• Metrics:
o Response time: the elapsed time on finding 1000 results.

o Query time: the elapsed time on completing the query.

• Counterpart:
o BC-DFS/BC-JOIN [VLDB’20].

• Open Source:
o https://github.com/Xtra-Computing/PathEnum
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Summary of Results

• Response time:
o 14.2 - 358.5X speedup.

o Less than 1 second (generally less than 100 ms).
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Summary of Results

• Response time:
o 14.2 - 358.5X speedup.

o Less than 1 second (generally less than 100 ms).

• Query time:
o 1.9 - 240.7X speedup.

o Improve the throughput from around 105 to  108 results/per second. 

• Query time variance:
o From 0.1 ms to several minutes.
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Why are some queries time consuming?

Epinsion ( 𝑉 = 75𝐾, 𝐸 = 508𝐾) Google ( 𝑉 = 876𝐾, 𝐸 = 5𝑀)
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Why are some queries time consuming?

Epinsion ( 𝑉 = 75𝐾, 𝐸 = 508𝐾) Google ( 𝑉 = 876𝐾, 𝐸 = 5𝑀)

• Enumeration time is closely related to the number of results.

• Some queries have a huge number of results.

165



Takeaway 

• Keep the search simple and efficient.
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Takeaway 

• Keep the search simple and efficient.

• Query-dependent index can significantly improve the performance.

• Query time is closely related to the number of results.
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Summary

•PathEnum, an efficient approach for HcPE.

•PathEnum’s key components include
oA light-weight index for input query.

oA two-level query optimizer with a join-based cost model.

oA search engine on the index.

• Up to two orders of magnitude speedup over state of the art.
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Future Work

•Scalability evaluation with a graph with 2 billion edges.
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How to reduce the response time on 

very large graphs?
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Multi(Many)-Core Era
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Performance Gap Between Processor and Memory
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Modern Processor Architecture
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L1 cache hit latency:

5 cycles / 2.6 GHz = 1.92 ns

L2 cache hit latency: 

11 cycles / 2.6 GHz = 4.23 ns

L3 cache hit latency:

34 cycles / 2.6 GHz = 13.08 ns

Memory access latency:

L3 + Memory Access = ~60-100 ns

Figure source: https://teivah.medium.com/go-and-cpu-caches-af5d32cc5592.

Up to 50X 

performance 

gap!



Parallelizing Subgraph Query 
Processing on a Single Machine
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➢ Optimize the matching order.

➢ Minimize the search breadth (branches) of each state.

180

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7
and 𝑣9 due to 

space limit.

𝞅

Research Focus of Sequential Algorithms
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• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7
and 𝑣9 due to 

space limit.

𝞅

Research Focus of Sequential Algorithms

We focus on efficiently exploring the 

tree in parallel. 



Fine-Grained Parallelism

➢ Observation: Each node (state) can be expanded independently.

➢ Solution: Regard each node as the basic task unit.

➢ Cons:

➢ The fine-grained parallel method results in a large number of light weight tasks.

➢ The approach can incur a high communication overhead.

• Node: a psi

• Edge: a mapping

• Cross: infeasible mapping

• Tick: a solution
u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

Compact 𝑣7 and 
𝑣9 due to space 

limit.

𝞅

𝑀 𝑀′
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Coarse-Grained Parallelism

➢ Observation: The subtree rooted at a node can be explored independently.

➢ Solution: Regard the subtree rooted at 𝑀, denoted as 𝐻(𝑀), as a parallel task. 𝐻(𝑀)
can be further divided into more fine grained ones by taking part of the candidates, 
denoted as 𝐻(𝑀, [𝑖: 𝑗]). 

u1

u2

u3

u4

v1 v3 v4 v6

v2 v5 v2 v5 v2 v5 v2 v5

√

× × ×

v7,9 v7 v9 v7,9 v7 v9 v7 v9

× × × × ×

v6 v1,3,4 v1,3,4,6 v1,4,6v3

× × ×√

𝞅

𝑀

𝐻(𝑀)

𝐻(𝑀0, [2: 4])

𝑀0
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Parallel Task

➢ We take coarse-grained tasks instead of fine-grained ones.

➢ Expand each subtree independently in a depth-first search method.

➢ Example: 𝐻, 𝐻′ and 𝐻1′ can be explored concurrently by different workers.

184



Load Balancing

➢ It is hard to assign equal amounts of workload to workers at the beginning (static load 
balancing), because 𝐻 is constructed on the fly and irregular.

➢ We design a dynamic load balancing approach to resolve the load imbalance problem.
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Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for 
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among 
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and 
there are idle workers.
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Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for 
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among 
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and 
there are idle workers.

Busy Busy Busy

Global Concurrent Queue

Worker 1 Worker 2 Worker 3
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Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for 
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among 
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and 
there are idle workers.

Busy Busy Idle

Global Concurrent Queue

Worker 1 Worker 2 Worker 3
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Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for 
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among 
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and 
there are idle workers.

Busy Busy Idle

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

Push
Wake Up
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Load Balancing

➢ Adopt a decentralized communication model, i.e., PSM has no master responsible for 
assigning tasks.

➢ Adopt a sender-initiated method with a global concurrent queue to deliver tasks among 
workers.

➢Busy workers will donate part of its task when they find that the queue is empty and 
there are idle workers.

Busy Busy idle

Global Concurrent Queue

Worker 1 Worker 2 Worker 3

Pop
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We find that there is a large 
amount of redundant computation 

in the unlabeled graph 
enumeration.
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Example of SE
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Query graph 𝑞

Data graph 𝐺 Search tree of SE

Enumeration Order

Partial Result

Given 𝑢 ∈ 𝑉(𝑞) and 𝜑, the 

backward neighbors 𝑁+
𝜑
(𝑢) of 

𝑢 contains the neighbors of 𝑢
positioned before 𝑢 in 𝜑.

Example: 𝑁+
𝜑
𝑢1 = {𝑢0, 𝑢2}



Example of SE
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Query graph 𝑞

Data graph 𝐺 Search tree of SE Expand a partial result

Step 1.

Step 2.



Observation One
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Query graph 𝑞

Data graph 𝐺 Search tree of SE

The same set intersection 𝑁(𝑣0) ∩ 𝑁(𝑣101)
is repeated in the computation of partial 
results in the dashed rectangle for 𝑢3.



Observation Two
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Query graph 𝑞

Data graph 𝐺 Search path of SE

Given partial results 𝑀1 and 𝑀2, the 
same set intersection 𝑁(𝑣0) ∩ 𝑁(𝑣101)
is repeated in the computation of 
candidates of 𝑢1 and 𝑢3.



Lazy Materialization

➢ We propose the lazy materialization subgraph enumeration algorithm, called LIGHT.

➢ Separate the computation and the materialization.

➢ Keep the order of the computation unchanged.

➢ Delay the materialization until some computation requires it.
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Example of Lazy Materialization
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𝑢0

𝑢2

𝑢1

𝑢3

Enumeration order

Query graph 𝑞

Data graph 𝐺



Example of Lazy Materialization
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

Operation order 

of SE

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

Enumeration order

Query graph 𝑞

Data graph 𝐺
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

Operation order 

of LIGHT
Operation order 

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

Operation order 

of LIGHT
Operation order 

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢0, 𝑀𝐴𝑇)

Operation order 

of LIGHT
Operation order 

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢0, 𝑀𝐴𝑇)

Operation order 

of LIGHT
Operation order 

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

Operation order 

of LIGHT
Operation order 

of SE

Enumeration order 

Query graph 𝑞

Data graph 𝐺
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

Operation order 

of LIGHT
Operation order 

of SE

Enumeration order 

Query graph 𝑞

Data graph 𝐺
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

Operation order 

of LIGHT
Operation order 

of SE

Enumeration order 

Query graph 𝑞

Data graph 𝐺
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𝑢0

𝑢2

𝑢1

𝑢3

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

(𝑢0, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝐶𝑂𝑀𝑃)

(𝑢1, 𝐶𝑂𝑀𝑃)

(𝑢3, 𝐶𝑂𝑀𝑃)

(𝑢2, 𝑀𝐴𝑇)

(𝑢0, 𝑀𝐴𝑇)

(𝑢1, 𝑀𝐴𝑇)

(𝑢3, 𝑀𝐴𝑇)

Operation order 

of LIGHT
Operation order 

of SE

Enumeration order

Query graph 𝑞

Data graph 𝐺
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Search tree of LIGHT

Query graph 𝑞

Data graph 𝐺 Search tree of SE



Observation Two
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Query graph 𝑞

Data graph 𝐺 Search path of SE

Given partial results 𝑀1 and 𝑀2, the 
same set intersection 𝑁(𝑣0) ∩ 𝑁(𝑣101)
is repeated in the computation of 
candidates of 𝑢1 and 𝑢3.



MSC based Candidate Sets Computation

➢ Compute the candidate set of 𝑢 ∈ 𝜑 by utilizing candidate sets of 𝑢′ ∈ 𝑋(𝑢) where 𝑋(𝑢)
contains all query vertices before 𝑢 in 𝜑.

➢ Convert it to the minimum set cover (MSC) problem.

➢ Input:  𝑈 = 𝑁+
𝜑
(𝑢), 𝑆 = 𝑢′ 𝑢′ ∈ 𝑈 ∪ {𝑁+

𝜑
(𝑢′)|𝑁+

𝜑
(𝑢′) ⊆ 𝑁+

𝜑
𝑢 ∧ 𝑢′ ∈ 𝑋(𝑢)}.

➢ Output: The smallest sub-collection 𝑆′ of 𝑆 whose union equals 𝑈.
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𝑢0

𝑢2

𝑢1

𝑢3

Compute candidate 

set of 𝑢3

𝑈 = 𝑢0, 𝑢2

𝑆 = {𝑢0}, {𝑢2}, 𝑢0, 𝑢2

Enumeration order

Query graph 𝑞

Data graph 𝐺

𝑁+
𝜑
(𝑢3) = 𝑢0, 𝑢2

𝑋(𝑢3) = 𝑢0, 𝑢1, 𝑢2

MSC Input:

MSC Output:

𝑆′ = 𝑢0, 𝑢2

𝐶𝑀(𝑢3) = 𝐶𝑀(𝑢1)

𝑁+
𝜑
(𝑢1)
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211

Search path of SE Search path of LIGHT

Query graph 𝑞

Data graph 𝐺



Parallel Implementation

➢ Utilize both vector registers and multiple cores in modern CPUs.

➢ Parallelize set intersections with SIMD (Single-Instruction-Multiple-Data) instructions.

➢ Parallelize the exploration of the search tree with multi-threading.
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Experimental Setup

➢ Experimental Environment:

➢ Implemented in C++ and compiled with icpc 16.0.0.

➢ A machine equipped with 20 cores (2 Intel Xeon E5-2650 v3 @ 2.30GHz CPUs), 
64GB RAM  and 1TB HDD.

➢ Use the AVX2 (256-bit) instruction set and execute with 64 threads.

➢ Data Graphs:
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Experimental Setup

➢ Query Graphs:
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Comparison with SE
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Comparison with SE (seconds).

➢ 𝑇𝑆𝐸 and 𝑇𝐿𝐼𝐺𝐻𝑇 are the serial execution time of SE and LIGHT respectively.

➢ 𝑇𝑆𝐸+𝑃 and 𝑇𝐿𝐼𝐺𝐻𝑇+𝑃 are the parallel execution time of SE and LIGHT respectively.

➢ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑆𝐸

𝑇𝐿𝐼𝐺𝐻𝑇+𝑃
.
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Graph Random Walk (RW)
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• Input:
➢ A graph 𝐺

➢ A set 𝑸 of walkers

• Action:
➢ Each walker 𝑄 wanders in 𝐺

independently

➢ 𝑄 randomly select a neighbor 

from the current residing 

vertex at each step

➢ Stop when satisfying a specific 

termination condition

• Output:
➢ The walk sequence of each 

walker in 𝑸



Graph Random Walk (RW)

• Input:
➢ A graph 𝐺

➢ A set 𝑸 of walkers

• Action:
➢ Each walker 𝑄 wanders in 𝐺

independently

➢ 𝑄 randomly select a neighbor 

from the current residing 

vertex at each step

➢ Stop when satisfying a specific 

termination condition

• Output:
➢ The walk sequence of each 

walker in 𝑸
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Usage of Graph Random Walk

• Graph processing applications

• Network community profiling

• Graphlet concentration

• Graph ranking applications

• Personalized page rank

• SimRank

• Graph embedding applications

• DeepWalk

• Node2Vec
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Categorization of Graph Random Walks

• RW algorithms mainly differ in the neighbor selection step.

220

𝑝(𝑒1)

𝑝(𝑒2)

𝑝(𝑒3)

Transition Probability 



Categorization of Graph Random Walks

• RW algorithms mainly differ in the neighbor selection step.

• Categorization based on transition probability 𝒑 properties.

• Unbiased: 𝑝 is the same.

• Static: 𝑝 is fixed in execution.

• Dynamic: 𝑝 depends on the state of a walker.

221

𝑝(𝑒1)

𝑝(𝑒2)

𝑝(𝑒3)

Biased

Transition Probability 



Properties of Graph Random Walk

Limited Data Parallelism

within One Query
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• Input:
➢ A graph 𝐺

➢ A set 𝑸 of walkers

• Action:
➢ Each walker 𝑄 wanders in 𝐺

independently

➢ 𝑄 randomly select a neighbor 

from the current residing 

vertex at each step

➢ Stop when satisfying a specific 

termination condition

• Output:
➢ The walk sequence of each 

walker in 𝑸



Properties of Graph Random Walk

Limited Data Parallelism

within One Query
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• Input:
➢ A graph 𝐺

➢ A set 𝑸 of walkers

• Action:
➢ Each walker 𝑄 wanders in 𝐺

independently

➢ 𝑄 randomly select a neighbor 

from the current residing 

vertex at each step

➢ Stop when satisfying a specific 

termination condition

• Output:
➢ The walk sequence of each 

walker in 𝑸

Massive Queries Executing 

Simultaneously



Properties of Graph Random Walk

Limited Data Parallelism

within One Query
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Massive Queries Executing 

Simultaneously

Method Front 
End

Bad 
Spec.

Core 
Bound

Memory 
Bound

Retiring

BFS 11.6% 9.1% 20.8% 40.6% 18.0%

SSSP 9.1% 12.5% 24.9% 36.9% 16.6%

PPR 0.6% 0.7% 15.8% 73.1% 9.7%

DeepWalk 1.0% 3.9% 16.7% 69.7% 8.7%

Comparison of pipeline slot breakdown between

traditional graph algorithms and RW algorithms 

(Measured by Intel VTune Profiler).

Frequent Memory Stalls due to 

Random Memory Access



Properties of Graph Random Walk

Limited Data Parallelism

within One Query
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Massive Queries Executing 

Simultaneously

Frequent Memory Stalls due to 

Random Memory Access

Significant Impact of Sampling 

Methods in Neighbor Selection

Effectiveness of sampling methods on different types of 

random walks. NAÏVE: a simple uniform sampling 

method; ITS: inverse transformation sampling; ALIAS: 

alias sampling; REJ: rejection sampling; O-REJ: a 

variant of rejection sampling.



Characteristics of Graph Computing Frameworks

Optimized for Single Query:
BFS, SSSP, CC etc.

Abstraction from View of Data:
vertex, edge, subgraph etc.

Exploiting Data Parallelism:
process vertices or edges in parallel.

[Figure Source: PowerGraph, OSDI’12].

Think like a Vertex.
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When Existing Graph Computing Frameworks Meet 
Graph Random Walk…

Optimized for Single Query

Abstraction from View of Data

Exploiting Data Parallelism

Graph Random

Walk
227

Limited Data Parallelism

within One Query

Massive Queries Executing 

Simultaneously

Frequent Memory Stalls due to 

Random Memory Access

Significant Impact of Sampling 

Methods in Neighbor Selection

Inherent 
Conflicts



ThunderRW: An In-Memory Graph Random Walk Engine

• Users can easily implement variant graph random walk based algorithms.

228

Hyperparameters

User-defined 

Functions



Step-Centric Model

• Think like a “walker” and factor a step into Gather-Move-Update (GMU) operations.

• Apply GMU operations to each walker in parallel.

𝑄

2

1 3

4

Gather
Collect the relative chance of 

each edge being selected.

User-Defined Function:
• Weight

𝑄

2

1 3

4

Move
Sample an edge and move 𝑄

along the edge.

System Operation.

𝑄

1 3

4

Update
Update the state of 𝑄 given 

the selected edge.

User-Defined Function:
• Update

229



Step-Interleaving Technique

• Resolve cache stalls caused by irregular memory access by software prefetching.

• Modern CPUs can issue multiple outstanding memory request.

Stage Memory Access Switch of Stage

Sequential Execution

Step 𝑖 of 𝑄
A CPU Core

Step 𝑖+1 of 𝑄

No sufficient computation 
within a query to overlap the 
memory access latency.
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Time



Step-Interleaving Technique

• Resolve cache stalls caused by irregular memory access by software prefetching.

• Modern CPUs can issue multiple outstanding memory request.

Stage Memory Access Switch of Stage

Sequential Execution

Step 𝑖 of 𝑄

Step Interleaving Execution

Time
Step 𝑖1 of 𝑄1

Step 𝑖2 of 𝑄2

Step 𝑖3 of 𝑄3

Step 𝑖4 of 𝑄4

A CPU Core
Step 𝑖+1 of 𝑄

A CPU Core

No sufficient computation 
within a query to overlap the 
memory access latency.
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Experiment Setup

232

Method PPR DeepWalk Node2Vec MetaPath

Baseline ✔ ✔ ✔ ✔

KnightKing
[SOSP’19]

✔ ✔ ✔ ╳

GraphWalker
[USENIX ATC’20]

✔ ╳ ╳ ╳

ThunderRW ✔ ✔ ✔ ✔

• Workloads: 12 graphs with |𝐸|
varying from 1.85𝑀 to 1.81𝐵.

• Environment: A Linux Server 

with a CPU with 10 cores and 

220 𝐺𝐵 RAM.



Summary of Results

• Comparison with the baseline method:

• 𝟖. 𝟔 − 𝟑𝟑𝟑𝟑. 𝟏𝑿 speedup.

• Comparison with existing systems:

• 𝟏. 𝟕 − 𝟏𝟒. 𝟔𝑿 speedup.

• Throughput:

• 𝟑 × 𝟏𝟎𝟖 in terms of steps per second.
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Evaluation of Step Interleaving

234

• Reduce memory bound from 𝟕𝟑. 𝟏% to 𝟏𝟓. 𝟎%.

• Speed up queries by up to 𝟒. 𝟖𝑿.

• Improvement can be limited for high-order random walks.

Experiment results on livejournal dataset, 𝑉 = 4.85𝑀, 𝐸 = 68.99𝑀

Notation:
wo/si: Disable step interleaving.
w/si: Enable step interleaving. 



Summary

• We study the design and implementation of an in-memory graph RW engine.

• We propose ThunderRW, an efficient in-memory RW engine.

• Step-Centric Model: Abstract the computation from the local view of moving a step.

• Step-Interleaving Technique: Hide memory latency by executing multiple queries alternatively.

• Source code publicly available at github.com/Xtra-Computing/ThunderRW.
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Conclusions

• Generic Benchmark Framework

• Metrics, baseline, design guidelines

• Algorithmic Optimization

• A holistic approach to arbitrary subgraph queries

• Real-time processing for hop-constrained s-t path queries

• Hardware Utilization

• Parallelizing query evaluation with multi-cores and vector registers

• Efficient in-memory random walk engine with cache optimization
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Thanks!
Q&A
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Hybrid Set Intersection Method

➢ The neighbor set of a vertex is stored as a sorted array in which each element is a 32-bit 
integer.

➢ Adopt a hybrid set intersection method to ensure that the cost of a set intersection 
operation is proportional to the size of the smaller set.

➢ Input: Two neighbor sets 𝑁(𝑢) and 𝑁 𝑣 where |𝑁(𝑢)| ≥ |𝑁(𝑣)|.

➢Output: 𝑁(𝑢) ∩ 𝑁(𝑣)

1.If 𝑁 𝑢 /|𝑁 𝑣 | ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then use the merge-based set 
intersection. (𝑂( 𝑁 𝑢 + |𝑁(𝑣)|))

2.Otherwise, use the Galloping search based method. (𝑂(|𝑁(𝑣)| ×
log |𝑁(𝑢)|))
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